Annotating an Extension Layer of Semantic Structure for Natural Language Text

Yulan Yan, Y. Matsuo, M. Ishizuka, T. Yokoi
{"title":"Annotating an Extension Layer of Semantic Structure for Natural Language Text","authors":"Yulan Yan, Y. Matsuo, M. Ishizuka, T. Yokoi","doi":"10.1109/ICSC.2008.11","DOIUrl":null,"url":null,"abstract":"Confronting the challenges of annotating naturally occurring text into a semantically structured form to facilitate automatic information extraction, current semantic role labeling (SRL) systems have been specifically examining a semantic predicate-argument structure. Based on the concept description language for natural language (CDL.nl) which is intended to describe the concept structure of text using a set of pre-defined semantic relations, we develop a parser to add a new layer of semantic annotation of natural language sentences as an extension of SRL. The parsing task is a relation extraction process with two steps: relation detection and relation classification. We advance a hybrid approach using different methods for two steps: first, based on dependency analysis, a rule-based method is presented to detect all entity pairs between each pair for which there exists a relationship; secondly, we use a feature-based method to assign a CDL.nl relation to each detected entity pair using support vector machine. We report the preliminary experimental results carried out on our manual dataset annotated with CDL.nl relations.","PeriodicalId":102805,"journal":{"name":"2008 IEEE International Conference on Semantic Computing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2008.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Confronting the challenges of annotating naturally occurring text into a semantically structured form to facilitate automatic information extraction, current semantic role labeling (SRL) systems have been specifically examining a semantic predicate-argument structure. Based on the concept description language for natural language (CDL.nl) which is intended to describe the concept structure of text using a set of pre-defined semantic relations, we develop a parser to add a new layer of semantic annotation of natural language sentences as an extension of SRL. The parsing task is a relation extraction process with two steps: relation detection and relation classification. We advance a hybrid approach using different methods for two steps: first, based on dependency analysis, a rule-based method is presented to detect all entity pairs between each pair for which there exists a relationship; secondly, we use a feature-based method to assign a CDL.nl relation to each detected entity pair using support vector machine. We report the preliminary experimental results carried out on our manual dataset annotated with CDL.nl relations.
自然语言文本语义结构扩展层标注
面对将自然发生的文本标注为语义结构化形式以促进自动信息提取的挑战,当前的语义角色标记(SRL)系统专门研究语义谓词-参数结构。基于自然语言的概念描述语言(CDL.nl),即使用一组预定义的语义关系来描述文本的概念结构,我们开发了一个解析器,作为SRL的扩展,为自然语言句子添加了新的语义注释层。解析任务是一个关系提取过程,分为两个步骤:关系检测和关系分类。我们提出了一种采用不同方法的混合方法,分为两个步骤:首先,在依赖分析的基础上,提出了一种基于规则的方法来检测每个实体对之间存在关系的所有实体对;其次,我们使用基于特征的方法来分配CDL。利用支持向量机与每个检测到的实体对建立Nl关系。我们报告了用CDL注释的手工数据集上进行的初步实验结果。问的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信