Integrated Imaging and Inversion of Multi-Physics Data for Exploration Geopysics Applications

W. Hu, A. Abubakar, T. Habashy
{"title":"Integrated Imaging and Inversion of Multi-Physics Data for Exploration Geopysics Applications","authors":"W. Hu, A. Abubakar, T. Habashy","doi":"10.1109/CAMSAP.2007.4497992","DOIUrl":null,"url":null,"abstract":"We present a multi-physics frequency-domain data inversion method for large-scale problems in reservoir evaluation applications, hi this work, the seismic data and the marine controlled-source electromagnetic (CSEM) data inversion algorithms were combined through a constraint that enforces the structural similarity between the conductivity image and the P-wave velocity image. In this work, the inverse algorithm that we develop is based on a regularized Gauss-Newton approach. We employ the multiplicative regularization to automatically choose the regularization parameters. The weighted L2-norm is used to reconstruct structures with sharp boundaries. According to the simulation results, the joint inversion algorithm based on the cross-gradient constraint shows significant improvement over the regular separate CSEM or seismic inversion. This joint inversion algorithm can be used not only in the integration of the marine CSEM and seismic survey data for the sub-sea exploration applications, but also for the joint inversion of the cross-well electromagnetic and the cross-well seismic to obtain the structural information.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a multi-physics frequency-domain data inversion method for large-scale problems in reservoir evaluation applications, hi this work, the seismic data and the marine controlled-source electromagnetic (CSEM) data inversion algorithms were combined through a constraint that enforces the structural similarity between the conductivity image and the P-wave velocity image. In this work, the inverse algorithm that we develop is based on a regularized Gauss-Newton approach. We employ the multiplicative regularization to automatically choose the regularization parameters. The weighted L2-norm is used to reconstruct structures with sharp boundaries. According to the simulation results, the joint inversion algorithm based on the cross-gradient constraint shows significant improvement over the regular separate CSEM or seismic inversion. This joint inversion algorithm can be used not only in the integration of the marine CSEM and seismic survey data for the sub-sea exploration applications, but also for the joint inversion of the cross-well electromagnetic and the cross-well seismic to obtain the structural information.
多物理场数据综合成像反演在勘探地球物理中的应用
本文提出了一种针对储层评价应用中大规模问题的多物理场频域数据反演方法,该方法将地震数据与海洋可控源电磁(CSEM)数据反演算法结合起来,通过约束来增强电导率图像与纵波速度图像之间的结构相似性。在这项工作中,我们开发的逆算法是基于正则化高斯-牛顿方法。我们采用乘法正则化来自动选择正则化参数。利用加权l2范数重构具有尖锐边界的结构。仿真结果表明,基于交叉梯度约束的联合反演算法比常规的单独CSEM或地震反演有明显的改进。该联合反演算法不仅可以将海洋电磁学和地震调查数据整合到海底勘探应用中,还可以进行井间电磁和井间地震联合反演,获取构造信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信