A comprehensive machine learning approach to prognose pulmonary disease from home

K. Karuppanan, A. S. Vairasundaram, M. Sigamani
{"title":"A comprehensive machine learning approach to prognose pulmonary disease from home","authors":"K. Karuppanan, A. S. Vairasundaram, M. Sigamani","doi":"10.1145/2345396.2345482","DOIUrl":null,"url":null,"abstract":"This paper proposes a machine learning based prognosis for rehabilitating the COPD patients to be monitored from home in real time. Wearable sensor Technology (WST) is utilized to collect the physiological status of the pulmonary patient from home dynamically and communicated to the healthcare centre. The proposed approach applies a comprehensive predictive model employing a time series forecasting using condensed polynomial neural network with swarm intelligence. Discrete particle swarm optimization (DPSO) filters out the relevant neurons and continuous particle swarm optimization (CPSO) reduces the computational overheads. The time series prediction is further strengthened by using multimodal genetic algorithm. Control measures such as sensitivity, specificity and reliability are applied meticulously to validate the predicted state of the patient.","PeriodicalId":290400,"journal":{"name":"International Conference on Advances in Computing, Communications and Informatics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advances in Computing, Communications and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2345396.2345482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a machine learning based prognosis for rehabilitating the COPD patients to be monitored from home in real time. Wearable sensor Technology (WST) is utilized to collect the physiological status of the pulmonary patient from home dynamically and communicated to the healthcare centre. The proposed approach applies a comprehensive predictive model employing a time series forecasting using condensed polynomial neural network with swarm intelligence. Discrete particle swarm optimization (DPSO) filters out the relevant neurons and continuous particle swarm optimization (CPSO) reduces the computational overheads. The time series prediction is further strengthened by using multimodal genetic algorithm. Control measures such as sensitivity, specificity and reliability are applied meticulously to validate the predicted state of the patient.
一种全面的机器学习方法来预测家庭肺部疾病
本文提出了一种基于机器学习的COPD患者康复预测方法,用于家中实时监测。利用可穿戴传感器技术(WST)从家中动态收集肺病患者的生理状态,并与医疗保健中心进行沟通。该方法采用一种综合预测模型,采用具有群体智能的凝聚多项式神经网络进行时间序列预测。离散粒子群优化(DPSO)过滤掉相关神经元,连续粒子群优化(CPSO)减少了计算开销。采用多模态遗传算法进一步加强时间序列预测。控制措施,如敏感性,特异性和可靠性被精心应用,以验证患者的预测状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信