Testing Predictor Significance with Ultra High Dimensional Multivariate Responses

Yingying Ma, Wei Lan, Hansheng Wang
{"title":"Testing Predictor Significance with Ultra High Dimensional Multivariate Responses","authors":"Yingying Ma, Wei Lan, Hansheng Wang","doi":"10.2139/ssrn.2533353","DOIUrl":null,"url":null,"abstract":"We consider here the problem of testing the effect of a subset of predictors for a regression model with predictor dimension fixed but ultra high dimensional responses. Because the response dimension is ultra high, the classical method of likelihood ratio test is no longer applicable. To solve the problem, we propose a novel solution, which decomposes the original problem into many testing problems with univariate responses. Subsequently, the usual residual sum of squares (RSS) type test statistics can be obtained. Those statistics are then integrated together across different responses to form an overall and powerful test statistic. Under the null hypothesis, the resulting test statistic is asymptotically standard normal after some appropriate standardization. Numerical studies are presented to demonstrate the finite sample performance of the test statistic and a real example about paid search advertising is analyzed for illustration purpose.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2533353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider here the problem of testing the effect of a subset of predictors for a regression model with predictor dimension fixed but ultra high dimensional responses. Because the response dimension is ultra high, the classical method of likelihood ratio test is no longer applicable. To solve the problem, we propose a novel solution, which decomposes the original problem into many testing problems with univariate responses. Subsequently, the usual residual sum of squares (RSS) type test statistics can be obtained. Those statistics are then integrated together across different responses to form an overall and powerful test statistic. Under the null hypothesis, the resulting test statistic is asymptotically standard normal after some appropriate standardization. Numerical studies are presented to demonstrate the finite sample performance of the test statistic and a real example about paid search advertising is analyzed for illustration purpose.
用超高维多元反应检验预测因子显著性
我们在这里考虑的问题是测试一个预测因子子集对预测因子维度固定但超高维响应的回归模型的影响。由于响应维数超高,经典的似然比检验方法已不再适用。为了解决这一问题,我们提出了一种新的解决方案,将原问题分解为多个单变量响应的测试问题。随后,可以得到通常的残差平方和(RSS)型检验统计量。然后将这些统计数据跨不同的响应集成在一起,形成一个全面而强大的测试统计数据。在零假设下,经过适当的标准化后,得到的检验统计量是渐近标准正态。通过数值研究证明了检验统计量的有限样本性能,并以付费搜索广告为例进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信