TDARMA Model Estimation Using the MLS and the TF Distribution

A. Al-Shoshan
{"title":"TDARMA Model Estimation Using the MLS and the TF Distribution","authors":"A. Al-Shoshan","doi":"10.29007/64FL","DOIUrl":null,"url":null,"abstract":"An approach for modeling linear time-dependent auto-regressive moving-average (TDARMA) systems using the time-frequency (TF) distribution is presented. The proposed method leads to an extension of several well-known techniques of linear timeinvariant (LTI) systems to process the linear, time-varying (LTV) case. It can also be applied in the modeling of non-stationary signals. In this paper, the well-known modified least square (MLS) and the Durbin's approximation methods are adapted to this nonstationary context. A simple relationship between the generalized transfer function and the time-dependent parameters of the LTV system is derived and computer simulation illustrating the effectiveness of our method is presented, considering that the output of the LTV system is corrupted by additive noise.","PeriodicalId":264035,"journal":{"name":"International Conference on Computers and Their Applications","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/64FL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An approach for modeling linear time-dependent auto-regressive moving-average (TDARMA) systems using the time-frequency (TF) distribution is presented. The proposed method leads to an extension of several well-known techniques of linear timeinvariant (LTI) systems to process the linear, time-varying (LTV) case. It can also be applied in the modeling of non-stationary signals. In this paper, the well-known modified least square (MLS) and the Durbin's approximation methods are adapted to this nonstationary context. A simple relationship between the generalized transfer function and the time-dependent parameters of the LTV system is derived and computer simulation illustrating the effectiveness of our method is presented, considering that the output of the LTV system is corrupted by additive noise.
基于MLS和TF分布的TDARMA模型估计
提出了一种基于时频(TF)分布的线性时变自回归移动平均(TDARMA)系统建模方法。所提出的方法将几种众所周知的线性时不变(LTI)系统技术扩展到处理线性时变(LTV)情况。它也可以应用于非平稳信号的建模。本文采用了众所周知的修正最小二乘(MLS)和Durbin近似方法来适应这种非平稳情况。推导了LTV系统的广义传递函数与时间相关参数之间的简单关系,并在考虑到LTV系统的输出受加性噪声干扰的情况下,给出了说明该方法有效性的计算机仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信