Effective Classification with Hybrid Evolutionary Techniques

P. Jaganathan, K. Thangavel, Pethalakshmi A, M. V. M. Govt
{"title":"Effective Classification with Hybrid Evolutionary Techniques","authors":"P. Jaganathan, K. Thangavel, Pethalakshmi A, M. V. M. Govt","doi":"10.1109/ADCOM.2006.4289911","DOIUrl":null,"url":null,"abstract":"Ant colony optimization (ACO) algorithms have been applied successfully to combinatorial optimization problems. More recently, Parpinelli et al have applied ACO to data mining classification problems, where they introduced a classification algorithm called Ant Miner. In this paper, we present a hybrid system that combines both the proposed Enhanced Quickreduct algorithm for data preprocessing and ant miner. The system was tested on standard data set and its performance is better than the original Ant Miner algorithm.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ant colony optimization (ACO) algorithms have been applied successfully to combinatorial optimization problems. More recently, Parpinelli et al have applied ACO to data mining classification problems, where they introduced a classification algorithm called Ant Miner. In this paper, we present a hybrid system that combines both the proposed Enhanced Quickreduct algorithm for data preprocessing and ant miner. The system was tested on standard data set and its performance is better than the original Ant Miner algorithm.
基于混合进化技术的有效分类
蚁群优化算法已成功地应用于组合优化问题。最近,Parpinelli等人将蚁群算法应用于数据挖掘分类问题,他们引入了一种称为蚂蚁矿工的分类算法。在本文中,我们提出了一种混合系统,结合了所提出的用于数据预处理的增强快速约简算法和蚂蚁挖掘算法。该系统在标准数据集上进行了测试,其性能优于原有的蚂蚁矿机算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信