Memory-efficient optimization of Gyrokinetic particle-to-grid interpolation for multicore processors

Kamesh Madduri, Samuel Williams, S. Ethier, L. Oliker, J. Shalf, E. Strohmaier, K. Yelick
{"title":"Memory-efficient optimization of Gyrokinetic particle-to-grid interpolation for multicore processors","authors":"Kamesh Madduri, Samuel Williams, S. Ethier, L. Oliker, J. Shalf, E. Strohmaier, K. Yelick","doi":"10.1145/1654059.1654108","DOIUrl":null,"url":null,"abstract":"We present multicore parallelization strategies for the particle-to-grid interpolation step in the Gyrokinetic Toroidal Code (GTC), a 3D particle-in-cell (PIC) application to study turbulent transport in magnetic-confinement fusion devices. Particle-grid interpolation is a known performance bottleneck in several PIC applications. In GTC, this step involves particles depositing charges to a 3D toroidal mesh, and multiple particles may contribute to the charge at a grid point. We design new parallel algorithms for the GTC charge deposition kernel, and analyze their performance on three leading multicore platforms. We implement thirteen different variants for this kernel and identify the best-performing ones given typical PIC parameters such as the grid size, number of particles per cell, and the GTC-specific particle Larmor radius variation. We find that our best strategies can be 2x faster than the reference optimized MPI implementation, and our analysis provides insight into desirable architectural features for high-performance PIC simulation codes.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We present multicore parallelization strategies for the particle-to-grid interpolation step in the Gyrokinetic Toroidal Code (GTC), a 3D particle-in-cell (PIC) application to study turbulent transport in magnetic-confinement fusion devices. Particle-grid interpolation is a known performance bottleneck in several PIC applications. In GTC, this step involves particles depositing charges to a 3D toroidal mesh, and multiple particles may contribute to the charge at a grid point. We design new parallel algorithms for the GTC charge deposition kernel, and analyze their performance on three leading multicore platforms. We implement thirteen different variants for this kernel and identify the best-performing ones given typical PIC parameters such as the grid size, number of particles per cell, and the GTC-specific particle Larmor radius variation. We find that our best strategies can be 2x faster than the reference optimized MPI implementation, and our analysis provides insight into desirable architectural features for high-performance PIC simulation codes.
多核处理器回旋动力学粒子到网格插值的内存效率优化
我们在Gyrokinetic Toroidal Code (GTC)中提出了粒子到网格插值步骤的多核并行化策略。GTC是一个用于研究磁约束聚变装置中湍流输运的三维粒子在胞内(PIC)应用程序。在一些PIC应用中,粒子网格插值是一个已知的性能瓶颈。在GTC中,这一步涉及到粒子将电荷沉积到3D环形网格中,并且多个粒子可能在一个网格点上贡献电荷。我们设计了新的GTC电荷沉积核并行算法,并分析了它们在三个领先的多核平台上的性能。我们为该内核实现了13种不同的变体,并根据典型的PIC参数(如网格大小、每个单元的粒子数量和gtc特定的粒子Larmor半径变化)识别出性能最佳的变体。我们发现我们的最佳策略可以比参考优化的MPI实现快2倍,我们的分析提供了对高性能PIC仿真代码的理想架构特性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信