Dynamic Batch Parallel Algorithms for Updating PageRank

Subhajit Sahu, Kishore Kothapalli, D. Banerjee
{"title":"Dynamic Batch Parallel Algorithms for Updating PageRank","authors":"Subhajit Sahu, Kishore Kothapalli, D. Banerjee","doi":"10.1109/IPDPSW55747.2022.00186","DOIUrl":null,"url":null,"abstract":"The design and implementation of parallel algorithms for dynamic graph problems is attracting significant research attention in the recent years, driven by numerous applications to social network analysis, neuroscience, and protein interaction networks. One such problem is the computation of PageRank values of vertices in a directed graph. This paper presents two new parallel algorithms for recomputing the PageRank values of vertices in a dynamic graph. Our techniques require the recomputation of the PageRank of only the vertices affected by the insertion/deletion of a batch of edges. We conduct detailed experimental studies of our algorithm on a set of 11 real-world graphs. Our results on Intel Xeon Silver 4116 CPU and NVIDIA Tesla V100 PCIe 16GB GPU indicate that our algorithms outperform static and dynamic update algorithms by $6.1\\times$: and $8.6\\times \\mathbf{on}$ the CPU, and by 9.8×and $9.3\\times\\mathbf{on}$ the GPU respectively. We also compare the performance of the algorithms in batched mode to cumulative single-edge updates.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design and implementation of parallel algorithms for dynamic graph problems is attracting significant research attention in the recent years, driven by numerous applications to social network analysis, neuroscience, and protein interaction networks. One such problem is the computation of PageRank values of vertices in a directed graph. This paper presents two new parallel algorithms for recomputing the PageRank values of vertices in a dynamic graph. Our techniques require the recomputation of the PageRank of only the vertices affected by the insertion/deletion of a batch of edges. We conduct detailed experimental studies of our algorithm on a set of 11 real-world graphs. Our results on Intel Xeon Silver 4116 CPU and NVIDIA Tesla V100 PCIe 16GB GPU indicate that our algorithms outperform static and dynamic update algorithms by $6.1\times$: and $8.6\times \mathbf{on}$ the CPU, and by 9.8×and $9.3\times\mathbf{on}$ the GPU respectively. We also compare the performance of the algorithms in batched mode to cumulative single-edge updates.
动态批处理并行算法更新PageRank
近年来,在社会网络分析、神经科学和蛋白质相互作用网络的众多应用的推动下,动态图问题并行算法的设计和实现吸引了大量的研究关注。其中一个问题是计算有向图中顶点的PageRank值。本文提出了两种新的并行算法来重新计算动态图中顶点的PageRank值。我们的技术只需要重新计算受插入/删除一批边影响的顶点的PageRank。我们在一组11个真实世界的图上对我们的算法进行了详细的实验研究。我们在Intel Xeon Silver 4116 CPU和NVIDIA Tesla V100 PCIe 16GB GPU上的结果表明,我们的算法比静态和动态更新算法分别高出$6.1\times$:和$8.6\times \mathbf{on}$,分别高出9.8×and $9.3\times\mathbf{on}$ GPU。我们还比较了算法在批处理模式和累积单边更新模式下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信