Calibrated spatial moving average simulations

N. Cressie, M. Pavlicova
{"title":"Calibrated spatial moving average simulations","authors":"N. Cressie, M. Pavlicova","doi":"10.1191/1471082x02st035oa","DOIUrl":null,"url":null,"abstract":"The spatial moving average (SMA) is a very natural type of spatial process that involves integrals or sums of independent and identically distributed random variables. Consequently, the mean and covariance function of the SMAs can be written down immediately in terms of their integrand or summand. Moreover, simulation from them is straightforward, and it does not require any large-matrix inversions. Although the SMAs generate a large class of spatial covariance functions, can we find easy-to-use SMAs, calibrated to be ‘like’ some of the usual covariance functions used in geostatistics? For example, is there an SMA that is straightforward to simulate from, whose covariance function is like the spherical covariance function? This article will derive such an SMA.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st035oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The spatial moving average (SMA) is a very natural type of spatial process that involves integrals or sums of independent and identically distributed random variables. Consequently, the mean and covariance function of the SMAs can be written down immediately in terms of their integrand or summand. Moreover, simulation from them is straightforward, and it does not require any large-matrix inversions. Although the SMAs generate a large class of spatial covariance functions, can we find easy-to-use SMAs, calibrated to be ‘like’ some of the usual covariance functions used in geostatistics? For example, is there an SMA that is straightforward to simulate from, whose covariance function is like the spherical covariance function? This article will derive such an SMA.
校准的空间移动平均模拟
空间移动平均线(SMA)是一种非常自然的空间过程,它涉及独立和同分布的随机变量的积分或总和。因此,sma的均值和协方差函数可以立即写成它们的被积函数或求和函数。此外,它们的模拟是直接的,并且不需要任何大矩阵的反转。虽然sma生成了一大类空间协方差函数,但我们能否找到易于使用的sma,并将其校准为“类似”地质统计学中使用的一些常用协方差函数?例如,是否存在可以直接模拟的SMA,其协方差函数类似于球面协方差函数?本文将推导出这样一个SMA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信