On-Chip In vivo Functional Imaging of the Mouse Brain Using a CMOS Image Sensor

D. C. Ng, T. Tokuda, K. Kagawa, H. Tamura, Sadao Shiosaka, J. Ohta
{"title":"On-Chip In vivo Functional Imaging of the Mouse Brain Using a CMOS Image Sensor","authors":"D. C. Ng, T. Tokuda, K. Kagawa, H. Tamura, Sadao Shiosaka, J. Ohta","doi":"10.1109/MMB.2006.251531","DOIUrl":null,"url":null,"abstract":"We have developed a new method for in vivo functional imaging of the mouse brain using a dedicated CMOS image sensor chip. The image sensor has 176times144-pixels with pixel size of 7.5times7.5 mum 2. A novel packaging process is developed to enable on-chip fluorescence imaging. The sensor chip is attached to a flexible polyimide substrate and sealed in epoxy. A thin-film resist is spin-coated directly onto the image sensor chip for excitation light filtering. By applying multiple coating, a transmittance below -44 dB is achieved. Also, the device has a selectivity of more than 80% for the fluorescence emission of 7-amino-4-methylcoumarin (AMC). The entire packaged device is about 350 mum thick, hence minimizing injury during invasive imaging inside the brain. In vivo functional imaging is performed by using a synthetic fluorogenic substrate which detects the presence of two serine proteases species in the brain. The introduction of kainic acid induces the expression of these protease species, which then reacts with the substrate to release the AMC fluorophore. Imaging of the AMC fluorescence allows the serine protease activity to be measured in real-time. We have successfully measured the protease activity and accurately determined its reaction onset","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a new method for in vivo functional imaging of the mouse brain using a dedicated CMOS image sensor chip. The image sensor has 176times144-pixels with pixel size of 7.5times7.5 mum 2. A novel packaging process is developed to enable on-chip fluorescence imaging. The sensor chip is attached to a flexible polyimide substrate and sealed in epoxy. A thin-film resist is spin-coated directly onto the image sensor chip for excitation light filtering. By applying multiple coating, a transmittance below -44 dB is achieved. Also, the device has a selectivity of more than 80% for the fluorescence emission of 7-amino-4-methylcoumarin (AMC). The entire packaged device is about 350 mum thick, hence minimizing injury during invasive imaging inside the brain. In vivo functional imaging is performed by using a synthetic fluorogenic substrate which detects the presence of two serine proteases species in the brain. The introduction of kainic acid induces the expression of these protease species, which then reacts with the substrate to release the AMC fluorophore. Imaging of the AMC fluorescence allows the serine protease activity to be measured in real-time. We have successfully measured the protease activity and accurately determined its reaction onset
利用CMOS图像传感器对小鼠大脑进行体内功能成像
我们开发了一种使用专用CMOS图像传感器芯片对小鼠大脑进行体内功能成像的新方法。图像传感器为176 × 144像素,像素大小为7.5 × 7.5 μ m 2。开发了一种新的封装工艺,以实现片上荧光成像。传感器芯片附着在柔性聚酰亚胺基板上,并用环氧树脂密封。将薄膜抗蚀剂直接自旋涂覆在图像传感器芯片上,用于激发光滤波。通过多次涂布,可实现-44 dB以下的透光率。此外,该装置对7-氨基-4-甲基香豆素(AMC)的荧光发射选择性超过80%。整个包装设备的厚度约为350毫米,因此在脑内侵入性成像时最大限度地减少了损伤。体内功能成像是通过使用合成荧光底物进行的,该底物检测大脑中两种丝氨酸蛋白酶的存在。kainic酸的引入诱导了这些蛋白酶的表达,然后这些蛋白酶与底物反应释放AMC荧光团。AMC荧光成像允许实时测量丝氨酸蛋白酶活性。我们成功地测量了蛋白酶的活性,并准确地确定了它的反应开始
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信