Robust feature extraction based on run-length compensation for degraded handwritten character recognition

M. Mori, M. Sawaki, N. Hagita, H. Murase, N. Mukawa
{"title":"Robust feature extraction based on run-length compensation for degraded handwritten character recognition","authors":"M. Mori, M. Sawaki, N. Hagita, H. Murase, N. Mukawa","doi":"10.1109/ICDAR.2001.953870","DOIUrl":null,"url":null,"abstract":"Conventional features are robust for recognizing either deformed or degraded characters. This paper proposes a feature extraction method that is robust for both of them. Run-length compensation is introduced for extracting approximate directional run-lengths of strokes from degraded handwritten characters. This technique is applied to the conventional feature vector based on directional run-lengths. Experiments for handwritten characters with additive or subtractive noise show that the proposed feature is superior to conventional ones over a wide range of the degree of noise.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Conventional features are robust for recognizing either deformed or degraded characters. This paper proposes a feature extraction method that is robust for both of them. Run-length compensation is introduced for extracting approximate directional run-lengths of strokes from degraded handwritten characters. This technique is applied to the conventional feature vector based on directional run-lengths. Experiments for handwritten characters with additive or subtractive noise show that the proposed feature is superior to conventional ones over a wide range of the degree of noise.
基于游程补偿的退化手写字符识别鲁棒特征提取
传统特征对于识别变形或退化的字符都是鲁棒的。本文提出了一种对两者都具有鲁棒性的特征提取方法。为从退化的手写字符中提取笔画的大致方向行长,引入了行长补偿。将该技术应用于基于方向行程长度的传统特征向量。对带有加性和减性噪声的手写字符进行的实验表明,在较大的噪声范围内,所提出的特征优于传统特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信