Real-Time Sensor Fault Detection, Isolation and Accommodation for Industrial Digital Twins

Hossein Darvishi, D. Ciuonzo, P. Rossi
{"title":"Real-Time Sensor Fault Detection, Isolation and Accommodation for Industrial Digital Twins","authors":"Hossein Darvishi, D. Ciuonzo, P. Rossi","doi":"10.1109/ICNSC52481.2021.9702175","DOIUrl":null,"url":null,"abstract":"The development of Digital Twins (DTs) has bloomed significantly in last years and related use cases are now pervading several application domains. DTs are built upon Internet of Things (IoT) and Industrial IoT platforms and critically rely on the availability of reliable sensor data. To this aim, in this article, we propose a sensor fault detection, isolation and accommodation (SFDIA) architecture based on machine-learning methodologies. Specifically, our architecture exploits the available spatio-temporal correlation in the sensory data in order to detect, isolate and accommodate faulty data via a bank of estimators, a bank of predictors and one classifier, all implemented via multi-layer perceptrons (MLPs). Faulty data are detected and isolated using the classifier, while isolated sensors are accommodated using the estimators. Performance evaluation confirms the effectiveness of the proposed SFDIA architecture to detect, isolate and accommodate faulty data injected into a (real) wireless sensor network (WSN) dataset.","PeriodicalId":129062,"journal":{"name":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC52481.2021.9702175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The development of Digital Twins (DTs) has bloomed significantly in last years and related use cases are now pervading several application domains. DTs are built upon Internet of Things (IoT) and Industrial IoT platforms and critically rely on the availability of reliable sensor data. To this aim, in this article, we propose a sensor fault detection, isolation and accommodation (SFDIA) architecture based on machine-learning methodologies. Specifically, our architecture exploits the available spatio-temporal correlation in the sensory data in order to detect, isolate and accommodate faulty data via a bank of estimators, a bank of predictors and one classifier, all implemented via multi-layer perceptrons (MLPs). Faulty data are detected and isolated using the classifier, while isolated sensors are accommodated using the estimators. Performance evaluation confirms the effectiveness of the proposed SFDIA architecture to detect, isolate and accommodate faulty data injected into a (real) wireless sensor network (WSN) dataset.
工业数字孪生的实时传感器故障检测、隔离和调节
数字孪生(DTs)的发展在过去几年中得到了显著的发展,相关的用例现在遍及几个应用领域。dt建立在物联网(IoT)和工业物联网平台之上,并严重依赖于可靠传感器数据的可用性。为此,在本文中,我们提出了一种基于机器学习方法的传感器故障检测、隔离和调节(SFDIA)架构。具体来说,我们的架构利用感官数据中可用的时空相关性,通过一组估计器、一组预测器和一个分类器来检测、隔离和容纳错误数据,所有这些都是通过多层感知器(mlp)实现的。使用分类器检测和隔离故障数据,而使用估计器容纳隔离的传感器。性能评估证实了所提出的SFDIA架构在检测、隔离和容纳注入(真实)无线传感器网络(WSN)数据集的故障数据方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信