GLRT for testing separability of a complex-valued mixture based on the Strong Uncorrelating Transform

D. Ramírez, P. Schreier, J. Vía, I. Santamaría
{"title":"GLRT for testing separability of a complex-valued mixture based on the Strong Uncorrelating Transform","authors":"D. Ramírez, P. Schreier, J. Vía, I. Santamaría","doi":"10.1109/MLSP.2012.6349785","DOIUrl":null,"url":null,"abstract":"The Strong Uncorrelating Transform (SUT) allows blind separation of a mixture of complex independent sources if and only if all sources have distinct circularity coefficients. In practice, the circularity coefficients need to be estimated from observed data. We propose a generalized likelihood ratio test (GLRT) for separability of a complex mixture using the SUT, based on estimated circularity coefficients. For distinct circularity coefficients (separable case), the maximum likelihood (ML) estimates, required for the GLRT, are straightforward. However, for circularity coefficients with multiplicity larger than one (non-separable case), the ML estimates are much more difficult to find. Numerical simulations show the good performance of the proposed detector.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Strong Uncorrelating Transform (SUT) allows blind separation of a mixture of complex independent sources if and only if all sources have distinct circularity coefficients. In practice, the circularity coefficients need to be estimated from observed data. We propose a generalized likelihood ratio test (GLRT) for separability of a complex mixture using the SUT, based on estimated circularity coefficients. For distinct circularity coefficients (separable case), the maximum likelihood (ML) estimates, required for the GLRT, are straightforward. However, for circularity coefficients with multiplicity larger than one (non-separable case), the ML estimates are much more difficult to find. Numerical simulations show the good performance of the proposed detector.
基于强不相关变换的复值混合物可分性检测
当且仅当所有源具有不同的圆系数时,强不相关变换(SUT)允许对复杂独立源的混合物进行盲分离。在实际应用中,圆度系数需要根据观测数据进行估计。我们提出了一个广义似然比检验(GLRT)的可分离性的复杂混合物使用SUT,基于估计的循环系数。对于不同的循环系数(可分离的情况下),GLRT所需的最大似然(ML)估计是直接的。然而,对于多重度系数大于1(不可分情况)的循环系数,ML估计很难找到。数值仿真结果表明,该检测器具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信