Joongheon Kim, Wonjun Lee, Jieun Yu, Jihoon Myung, Eunkyo Kim, Choonhwa Lee
{"title":"Effect of localized optimal clustering for reader anti-collision in RFID networks: fairness aspects to the readers","authors":"Joongheon Kim, Wonjun Lee, Jieun Yu, Jihoon Myung, Eunkyo Kim, Choonhwa Lee","doi":"10.1109/ICCCN.2005.1523923","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive and dynamic localized scheme unique to hierarchical clustering in RFID networks, while reducing the overlapping areas of clusters and consequently reducing collisions among RFID readers. Drew on our LLC scheme that adjusts cluster coverage to minimize energy consumption, low-energy localized clustering for RFID networks (LLCR) addresses RFID reader anti-collision problem in this paper. LLCR is a RFID reader anti-collision algorithm that minimizes collisions by minimizing overlapping areas of clusters that each RFID reader covers. LLCR takes into account each RFID reader's energy state as well as RFID reader collisions. For the energy state factor, we distinguish homogeneous RFID networks from heterogeneous ones according to computing power of each RFID reader. Therefore, we have designed efficient homo-LLCR and hetero-LLCR schemes for each case. Our simulation-based performance evaluation shows that LLCR minimizes energy consumption and overlapping areas of clusters of RFID readers.","PeriodicalId":379037,"journal":{"name":"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2005.1523923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
This paper proposes an adaptive and dynamic localized scheme unique to hierarchical clustering in RFID networks, while reducing the overlapping areas of clusters and consequently reducing collisions among RFID readers. Drew on our LLC scheme that adjusts cluster coverage to minimize energy consumption, low-energy localized clustering for RFID networks (LLCR) addresses RFID reader anti-collision problem in this paper. LLCR is a RFID reader anti-collision algorithm that minimizes collisions by minimizing overlapping areas of clusters that each RFID reader covers. LLCR takes into account each RFID reader's energy state as well as RFID reader collisions. For the energy state factor, we distinguish homogeneous RFID networks from heterogeneous ones according to computing power of each RFID reader. Therefore, we have designed efficient homo-LLCR and hetero-LLCR schemes for each case. Our simulation-based performance evaluation shows that LLCR minimizes energy consumption and overlapping areas of clusters of RFID readers.