An E-Commerce Coupon Target Population Positioning Model Based on Random Forest and eXtreme Gradient Boosting

Zhang-Fa Yan, Yu-Lin Shen, Wei-Jun Liu, Jie-Min Long, Qingyang Wei
{"title":"An E-Commerce Coupon Target Population Positioning Model Based on Random Forest and eXtreme Gradient Boosting","authors":"Zhang-Fa Yan, Yu-Lin Shen, Wei-Jun Liu, Jie-Min Long, Qingyang Wei","doi":"10.1109/CISP-BMEI.2018.8633247","DOIUrl":null,"url":null,"abstract":"At present, the commonly used e-commerce coupon target population location method is based on Logistic, of which the positioning accuracy is not high in the case of serious data loss. In this paper, we propose a complex classification model based on Random Forest (RF)and eXtreme Gradient Boosting (XGBoost), and test the reliability of it through experiments. Our experimental results show that the model has good performance on the online Alibaba O2O Coupon Usage Forecast competition dataset.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

At present, the commonly used e-commerce coupon target population location method is based on Logistic, of which the positioning accuracy is not high in the case of serious data loss. In this paper, we propose a complex classification model based on Random Forest (RF)and eXtreme Gradient Boosting (XGBoost), and test the reliability of it through experiments. Our experimental results show that the model has good performance on the online Alibaba O2O Coupon Usage Forecast competition dataset.
基于随机森林和极端梯度增强的电子商务优惠券目标人群定位模型
目前常用的电子商务优惠券目标人群定位方法是基于Logistic的,在数据丢失严重的情况下定位精度不高。本文提出了一种基于随机森林(Random Forest, RF)和极限梯度增强(eXtreme Gradient boost, XGBoost)的复杂分类模型,并通过实验验证了该模型的可靠性。实验结果表明,该模型在在线阿里巴巴O2O优惠券使用预测竞争数据集上具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信