Wearable Sensing and Quantified-self to explain Learning Experience

K. Sharma, I. Pappas, Sofia Papavlasopoulou, M. Giannakos
{"title":"Wearable Sensing and Quantified-self to explain Learning Experience","authors":"K. Sharma, I. Pappas, Sofia Papavlasopoulou, M. Giannakos","doi":"10.1109/ICALT55010.2022.00048","DOIUrl":null,"url":null,"abstract":"The confluence of wearable technologies for sensing learners and the quantified-self provides a unique opportunity to understand learners’ experience in diverse learning contexts. We use data from learners using Empatica Wristbands and self-reported questionnaire. We compute stress, arousal, engagement and emotional regulation from physiological data; and perceived performance from the self-reported data. We use Fuzzy Set Qualitative Comparative Analysis (fsQCA) to find relations between the physiological measurements and the perceived learning performance. The results show how the presence or absence of arousal, engagement, emotional regulation, and stress, as well as their combinations, can be sufficient to explain high perceived learning performance","PeriodicalId":221464,"journal":{"name":"2022 International Conference on Advanced Learning Technologies (ICALT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT55010.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The confluence of wearable technologies for sensing learners and the quantified-self provides a unique opportunity to understand learners’ experience in diverse learning contexts. We use data from learners using Empatica Wristbands and self-reported questionnaire. We compute stress, arousal, engagement and emotional regulation from physiological data; and perceived performance from the self-reported data. We use Fuzzy Set Qualitative Comparative Analysis (fsQCA) to find relations between the physiological measurements and the perceived learning performance. The results show how the presence or absence of arousal, engagement, emotional regulation, and stress, as well as their combinations, can be sufficient to explain high perceived learning performance
可穿戴式传感与量化自我解释学习体验
用于感知学习者的可穿戴技术与量化自我的融合为了解学习者在不同学习环境中的体验提供了独特的机会。我们使用学习者使用Empatica腕带和自我报告问卷的数据。我们根据生理数据计算压力、觉醒、参与和情绪调节;以及从自我报告数据中感知到的表现。我们使用模糊集定性比较分析(fsQCA)来寻找生理测量与感知学习绩效之间的关系。结果表明,唤醒、参与、情绪调节和压力的存在或缺失,以及它们的组合,如何足以解释高感知学习表现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信