Jie Tang, Shaoshan Liu, Zhimin Gu, Xiao-Feng Li, J. Gaudiot
{"title":"Hardware-assisted middleware: Acceleration of garbage collection operations","authors":"Jie Tang, Shaoshan Liu, Zhimin Gu, Xiao-Feng Li, J. Gaudiot","doi":"10.1109/ASAP.2010.5541011","DOIUrl":null,"url":null,"abstract":"Although the virtualization technology brings many benefits to cloud computing environments, as the virtual machines provide more features, the middleware layer has become bloated, introducing a high overhead. Our ultimate goal is to provide hardware-assisted solutions to improve the middleware performance in cloud computing environments. As a starting point, in this paper, we design, implement, and evaluate specialized hardware instructions to accelerate GC operations. We select GC because it is a common component in virtual machine designs and it incurs high performance and energy consumption overheads. We performed a profiling study on various GC algorithms to identify the GC performance hotspots, which contribute to more than 50% of the total GC execution time. By moving these hotspot functions into hardware, we managed to achieve an order of magnitude speedup.","PeriodicalId":175846,"journal":{"name":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2010.5541011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Although the virtualization technology brings many benefits to cloud computing environments, as the virtual machines provide more features, the middleware layer has become bloated, introducing a high overhead. Our ultimate goal is to provide hardware-assisted solutions to improve the middleware performance in cloud computing environments. As a starting point, in this paper, we design, implement, and evaluate specialized hardware instructions to accelerate GC operations. We select GC because it is a common component in virtual machine designs and it incurs high performance and energy consumption overheads. We performed a profiling study on various GC algorithms to identify the GC performance hotspots, which contribute to more than 50% of the total GC execution time. By moving these hotspot functions into hardware, we managed to achieve an order of magnitude speedup.