Determining Dose-Response Characteristics of Molecular Perturbations in Whole-Organism Assays Using Biological Imaging and Machine Learning

D. Asarnow, Rahul Singh
{"title":"Determining Dose-Response Characteristics of Molecular Perturbations in Whole-Organism Assays Using Biological Imaging and Machine Learning","authors":"D. Asarnow, Rahul Singh","doi":"10.1109/BIBM.2018.8621083","DOIUrl":null,"url":null,"abstract":"Advances in microscopy and high-content imaging now offer a powerful way to profile the phenotypic response of intact systems to molecular perturbation and study the response irrespective of putative target activity and by preserving the physiological context in the living systems. An emerging challenge in bioinformatics and drug discovery is constituted by data generated from such studies that involve analyzing the effect of specific molecules at the system-wide organism level. In this paper we propose a novel automated approach that combines techniques from biological imaging and machine learning to automatically quantify a fundamental measure of molecular perturbation in an intact biological system, namely, its dose-response characteristics. We validate our results using phenotypic assay data involving post-infective larvae (schistosomula) of the parasitic Schistosoma mansoni flatworm. This parasite is one of the etiological agents of schistosomiasis -a significant neglected tropical disease, which puts at-risk nearly two billion people.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Advances in microscopy and high-content imaging now offer a powerful way to profile the phenotypic response of intact systems to molecular perturbation and study the response irrespective of putative target activity and by preserving the physiological context in the living systems. An emerging challenge in bioinformatics and drug discovery is constituted by data generated from such studies that involve analyzing the effect of specific molecules at the system-wide organism level. In this paper we propose a novel automated approach that combines techniques from biological imaging and machine learning to automatically quantify a fundamental measure of molecular perturbation in an intact biological system, namely, its dose-response characteristics. We validate our results using phenotypic assay data involving post-infective larvae (schistosomula) of the parasitic Schistosoma mansoni flatworm. This parasite is one of the etiological agents of schistosomiasis -a significant neglected tropical disease, which puts at-risk nearly two billion people.
利用生物成像和机器学习确定整个生物体检测中分子扰动的剂量-反应特征
显微技术和高含量成像技术的进步,为完整系统对分子扰动的表型反应提供了一种强有力的方法,可以不考虑假定的靶标活性,并通过保留生命系统中的生理环境来研究这种反应。生物信息学和药物发现的新挑战是由这些研究产生的数据构成的,这些研究涉及在全系统生物水平上分析特定分子的作用。在本文中,我们提出了一种新的自动化方法,该方法结合了生物成像和机器学习技术,以自动量化完整生物系统中分子扰动的基本测量,即其剂量-反应特性。我们使用涉及寄生曼氏血吸虫扁虫感染后幼虫(血吸虫)的表型分析数据验证了我们的结果。这种寄生虫是血吸虫病的病原之一,血吸虫病是一种严重的被忽视的热带疾病,使近20亿人处于危险之中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信