Efficient Dense Reconstruction from Video

Phil Parsonage, A. Hilton, J. Starck
{"title":"Efficient Dense Reconstruction from Video","authors":"Phil Parsonage, A. Hilton, J. Starck","doi":"10.1109/CVMP.2011.10","DOIUrl":null,"url":null,"abstract":"We present a framework for efficient reconstruction of dense scene structure from video. Sequential structure-from-motion recovers camera information from video, providing only sparse 3D points. We build a dense 3D point cloud by performing full-frame tracking and depth estimation across sequences. First, we present a novel algorithm for sequential frame selection to extract a set of key frames with sufficient parallax for accurate depth reconstruction. Second, we introduce a technique for efficient reconstruction using dense tracking with geometrically correct optimisation of depth and orientation. Key frame selection is also performed in optimisation to provide accurate depth reconstruction for different scene elements. We test our work on benchmark footage and scenes containing local non-rigid motion, foreground clutter and occlusions to show comparable performance to state of the art techniques. We also show a substantial increase in speed on real world footage compared to existing methods, when they succeed, and successful reconstructions when they fail.","PeriodicalId":167135,"journal":{"name":"2011 Conference for Visual Media Production","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference for Visual Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVMP.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a framework for efficient reconstruction of dense scene structure from video. Sequential structure-from-motion recovers camera information from video, providing only sparse 3D points. We build a dense 3D point cloud by performing full-frame tracking and depth estimation across sequences. First, we present a novel algorithm for sequential frame selection to extract a set of key frames with sufficient parallax for accurate depth reconstruction. Second, we introduce a technique for efficient reconstruction using dense tracking with geometrically correct optimisation of depth and orientation. Key frame selection is also performed in optimisation to provide accurate depth reconstruction for different scene elements. We test our work on benchmark footage and scenes containing local non-rigid motion, foreground clutter and occlusions to show comparable performance to state of the art techniques. We also show a substantial increase in speed on real world footage compared to existing methods, when they succeed, and successful reconstructions when they fail.
高效的视频密集重建
提出了一种从视频中高效重建密集场景结构的框架。序列运动结构从视频中恢复摄像机信息,只提供稀疏的3D点。我们通过跨序列执行全帧跟踪和深度估计来构建密集的3D点云。首先,我们提出了一种新的连续帧选择算法,以提取一组具有足够视差的关键帧,用于精确的深度重建。其次,我们介绍了一种利用深度和方向几何正确优化的密集跟踪进行高效重建的技术。关键帧选择也进行了优化,以提供准确的深度重建不同的场景元素。我们在包含局部非刚性运动、前景杂波和遮挡的基准镜头和场景上测试我们的工作,以显示与最先进技术相当的性能。我们还显示,与现有方法相比,在真实世界的镜头上,当它们成功时,以及在失败时成功重建时,它们的速度都有了大幅提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信