Semantic Segmentation Of Endangered Tree Species In Brazilian Savanna Using Deeplabv3+ Variants

D. L. Torres, R. Feitosa, L. L. la Rosa, P. Happ, J. Marcato, W. Gonçalves, J. Martins, V. Liesenberg
{"title":"Semantic Segmentation Of Endangered Tree Species In Brazilian Savanna Using Deeplabv3+ Variants","authors":"D. L. Torres, R. Feitosa, L. L. la Rosa, P. Happ, J. Marcato, W. Gonçalves, J. Martins, V. Liesenberg","doi":"10.1109/LAGIRS48042.2020.9165625","DOIUrl":null,"url":null,"abstract":"Knowing the spatial distribution of endangered tree species in a forest ecosystem or forest remnants is a valuable information to support environmental conservation practices. The use of Unmanned Aerial Vehicles (UAVs) offers a suitable alternative for this task, providing very high-resolution images at low costs. In parallel, recent advances in the computer vision field have led to the development of effective deep learning techniques for end-to-end semantic image segmentation. In this scenario, the DeepLabv3+ is well established as the state-of-the-art deep learning method for semantic segmentation tasks. The present paper proposes and assesses the use of DeepLabv3+ for mapping the threatened Dipteryx alata Vogel tree, popularly also known as cumbaru. We also compare two backbone networks for feature extraction in the DeepLabv3+ architecture: the Xception and MobileNetv2. Experiments carried out on a dataset consisting of 225 UAV/RGB images of an urban area in Midwest Brazil demonstrated that DeepLabv3+ was able to achieve in mean overall accuracy and Fl-score above 90%, and IoU above 80%. The experimental analysis also pointed out that the MobileNetv2 backbone overcame its counterpart by a wide margin due to its comparatively simpler architecture in view of the available training data.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Knowing the spatial distribution of endangered tree species in a forest ecosystem or forest remnants is a valuable information to support environmental conservation practices. The use of Unmanned Aerial Vehicles (UAVs) offers a suitable alternative for this task, providing very high-resolution images at low costs. In parallel, recent advances in the computer vision field have led to the development of effective deep learning techniques for end-to-end semantic image segmentation. In this scenario, the DeepLabv3+ is well established as the state-of-the-art deep learning method for semantic segmentation tasks. The present paper proposes and assesses the use of DeepLabv3+ for mapping the threatened Dipteryx alata Vogel tree, popularly also known as cumbaru. We also compare two backbone networks for feature extraction in the DeepLabv3+ architecture: the Xception and MobileNetv2. Experiments carried out on a dataset consisting of 225 UAV/RGB images of an urban area in Midwest Brazil demonstrated that DeepLabv3+ was able to achieve in mean overall accuracy and Fl-score above 90%, and IoU above 80%. The experimental analysis also pointed out that the MobileNetv2 backbone overcame its counterpart by a wide margin due to its comparatively simpler architecture in view of the available training data.
基于Deeplabv3+变体的巴西热带草原濒危树种语义分割
了解濒危树种在森林生态系统或森林遗迹中的空间分布是支持环境保护措施的宝贵信息。无人机(uav)的使用为这项任务提供了一个合适的替代方案,以低成本提供非常高分辨率的图像。与此同时,计算机视觉领域的最新进展导致了端到端语义图像分割的有效深度学习技术的发展。在这种情况下,DeepLabv3+作为语义分割任务的最先进的深度学习方法已经建立。本论文提出并评估了使用DeepLabv3+绘制受威胁的alata Dipteryx Vogel树(通常也称为cumbaru)。我们还比较了DeepLabv3+架构中用于特征提取的两个骨干网络:Xception和MobileNetv2。在巴西中西部城市地区的225张无人机/RGB图像数据集上进行的实验表明,DeepLabv3+能够实现平均总体精度和Fl-score在90%以上,IoU在80%以上。实验分析还指出,考虑到现有的训练数据,MobileNetv2骨干网由于其相对简单的架构,大大超越了其对应物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信