Using Data Analytics to Optimize Public Transportation on a College Campus

K. Zimmer, H. Kurban, Mark Jenne, Logan Keating, P. Maull, Mehmet M. Dalkilic
{"title":"Using Data Analytics to Optimize Public Transportation on a College Campus","authors":"K. Zimmer, H. Kurban, Mark Jenne, Logan Keating, P. Maull, Mehmet M. Dalkilic","doi":"10.1109/DSAA.2018.00059","DOIUrl":null,"url":null,"abstract":"Using a large volume of bus data in the form of GPS coordinates (over 100 million data points) and automated passenger count data (over 1 million data points) we have developed (1) a system of analysis and prediction of future public transportation demand (2) a new model that uses concepts specific to college campuses that maximizes passenger satisfaction. Using these concepts we improve service of a model college public transportation service and more specifically the Indiana University Campus Bus Service (IUCBS).","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Using a large volume of bus data in the form of GPS coordinates (over 100 million data points) and automated passenger count data (over 1 million data points) we have developed (1) a system of analysis and prediction of future public transportation demand (2) a new model that uses concepts specific to college campuses that maximizes passenger satisfaction. Using these concepts we improve service of a model college public transportation service and more specifically the Indiana University Campus Bus Service (IUCBS).
使用数据分析优化大学校园的公共交通
利用GPS坐标形式的大量公交车数据(超过1亿个数据点)和自动乘客计数数据(超过100万个数据点),我们开发了(1)一个分析和预测未来公共交通需求的系统(2)一个使用大学校园特定概念的新模型,以最大限度地提高乘客满意度。利用这些概念,我们改进了一个典型的大学公共交通服务,更具体地说,印第安纳大学校园巴士服务(IUCBS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信