An effective coreset compression algorithm for large scale sensor networks

Dan Feldman, Andrew Sugaya, D. Rus
{"title":"An effective coreset compression algorithm for large scale sensor networks","authors":"Dan Feldman, Andrew Sugaya, D. Rus","doi":"10.1145/2185677.2185739","DOIUrl":null,"url":null,"abstract":"The wide availability of networked sensors such as GPS and cameras is enabling the creation of sensor networks that generate huge amounts of data. For example, vehicular sensor networks where in-car GPS sensor probes are used to model and monitor traffic can generate on the order of gigabytes of data in real time. How can we compress streaming high-frequency data from distributed sensors? In this paper we construct coresets for streaming motion. The coreset of a data set is a small set which approximately represents the original data. Running queries or fitting models on the core-set will yield similar results when applied to the original data set. We present an algorithm for computing a small coreset of a large sensor data set. Surprisingly, the size of the coreset is independent of the size of the original data set. Combining map-and-reduce techniques with our coreset yields a system capable of compressing in parallel a stream of O(n) points using space and update time that is only O(log n). We provide experimental results and compare the algorithm to the popular Douglas-Peucker heuristic for compressing GPS data.","PeriodicalId":231003,"journal":{"name":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185677.2185739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The wide availability of networked sensors such as GPS and cameras is enabling the creation of sensor networks that generate huge amounts of data. For example, vehicular sensor networks where in-car GPS sensor probes are used to model and monitor traffic can generate on the order of gigabytes of data in real time. How can we compress streaming high-frequency data from distributed sensors? In this paper we construct coresets for streaming motion. The coreset of a data set is a small set which approximately represents the original data. Running queries or fitting models on the core-set will yield similar results when applied to the original data set. We present an algorithm for computing a small coreset of a large sensor data set. Surprisingly, the size of the coreset is independent of the size of the original data set. Combining map-and-reduce techniques with our coreset yields a system capable of compressing in parallel a stream of O(n) points using space and update time that is only O(log n). We provide experimental results and compare the algorithm to the popular Douglas-Peucker heuristic for compressing GPS data.
一种有效的大规模传感器网络核集压缩算法
全球定位系统(GPS)和摄像头等联网传感器的广泛应用,使得能够产生大量数据的传感器网络得以建立。例如,车载传感器网络可以实时生成千兆字节的数据,其中车载GPS传感器探针用于建模和监控交通。我们如何压缩来自分布式传感器的高频流数据?本文构造了流运动的核心集。数据集的核心集是一个近似代表原始数据的小集合。在核心集上运行查询或拟合模型将在应用于原始数据集时产生类似的结果。我们提出了一种计算大型传感器数据集的小核心集的算法。令人惊讶的是,核心集的大小与原始数据集的大小无关。将map-and-reduce技术与我们的核心集相结合,产生了一个能够并行压缩O(n)个点流的系统,使用的空间和更新时间仅为O(log n)。我们提供了实验结果,并将该算法与流行的用于压缩GPS数据的Douglas-Peucker启发式算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信