{"title":"Strategies of residential peak shaving with integration of demand response and V2H","authors":"Long Zhao, V. Aravinthan","doi":"10.1109/APPEEC.2013.6837260","DOIUrl":null,"url":null,"abstract":"Plug-in electric vehicles (PEVs) have the potential to be used as storage devices to mitigate some of the grid level impacts, especially at the residential level. Since primary usage of electric vehicle battery is for transportation, it is important to optimize the life of the battery and energy discharge to the grid (V2G). The smart grid initiative requires active consumer participation through demand side management. Proper V2G application combined with demand response (DR) could improve some of the system level concerns such as peak shaving and flexible loading. This work proposes a vehicle-to-house (V2H) charge management based on demand side management scheme to minimize the peak loading at each individual house using a model based control design. GridLab-D is used to evaluate the model which shows such a scheme has the potential to reduce the peak.","PeriodicalId":330524,"journal":{"name":"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2013.6837260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Plug-in electric vehicles (PEVs) have the potential to be used as storage devices to mitigate some of the grid level impacts, especially at the residential level. Since primary usage of electric vehicle battery is for transportation, it is important to optimize the life of the battery and energy discharge to the grid (V2G). The smart grid initiative requires active consumer participation through demand side management. Proper V2G application combined with demand response (DR) could improve some of the system level concerns such as peak shaving and flexible loading. This work proposes a vehicle-to-house (V2H) charge management based on demand side management scheme to minimize the peak loading at each individual house using a model based control design. GridLab-D is used to evaluate the model which shows such a scheme has the potential to reduce the peak.