A New Solving Method for Fuzzy Bilevel Optimization with Triangular Fuzzy Coefficients

Aihong Ren, Xingsi Xue
{"title":"A New Solving Method for Fuzzy Bilevel Optimization with Triangular Fuzzy Coefficients","authors":"Aihong Ren, Xingsi Xue","doi":"10.1109/CIS2018.2018.00019","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel solving method by combing the magnitude of fuzzy number with a simple ranking approach to handle bilevel linear programming involving triangular fuzzy coefficients. A simple ranking approach of two triangular fuzzy numbers is used to tackle the fuzzy inequality constraints in the upper and lower level programming problems, and the definition of the magnitude of triangular fuzzy number is applied to deal with the fuzzy objective functions at the upper and lower levels. Then the original problem is changed into a deterministic bilevel model. Finally, the proposed solution method is explained with the help of a numerical example.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we develop a novel solving method by combing the magnitude of fuzzy number with a simple ranking approach to handle bilevel linear programming involving triangular fuzzy coefficients. A simple ranking approach of two triangular fuzzy numbers is used to tackle the fuzzy inequality constraints in the upper and lower level programming problems, and the definition of the magnitude of triangular fuzzy number is applied to deal with the fuzzy objective functions at the upper and lower levels. Then the original problem is changed into a deterministic bilevel model. Finally, the proposed solution method is explained with the help of a numerical example.
三角模糊系数模糊双层优化的一种新求解方法
本文提出了一种新的求解方法,将模糊数的大小与一种简单的排序方法相结合,来处理涉及三角模糊系数的双层线性规划问题。采用两个三角模糊数的简单排序方法来处理上下两层规划问题中的模糊不等式约束,并采用三角模糊数大小的定义来处理上下两层的模糊目标函数。然后将原问题转化为确定性双层模型。最后,通过数值算例对所提出的求解方法进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信