A Design Space for Explainable Ranking and Ranking Models

I. A. Hazwani, J. Schmid, M. Sachdeva, J. Bernard
{"title":"A Design Space for Explainable Ranking and Ranking Models","authors":"I. A. Hazwani, J. Schmid, M. Sachdeva, J. Bernard","doi":"10.48550/arXiv.2205.15305","DOIUrl":null,"url":null,"abstract":"Item ranking systems support users in multi-criteria decision-making tasks. Users need to trust rankings and ranking algorithms to reflect user preferences nicely while avoiding systematic errors and biases. However, today only few approaches help end users, model developers, and analysts to explain rankings. We report on the study of explanation approaches from the perspectives of recommender systems, explainable AI, and visualization research and propose the first cross-domain design space for explainers of item rankings. In addition, we leverage the descriptive power of the design space to characterize a) existing explainers and b) three main user groups involved in ranking explanation tasks. The generative power of the design space is a means for future designers and developers to create more target-oriented solutions in this only weakly exploited space.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"17 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.15305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Item ranking systems support users in multi-criteria decision-making tasks. Users need to trust rankings and ranking algorithms to reflect user preferences nicely while avoiding systematic errors and biases. However, today only few approaches help end users, model developers, and analysts to explain rankings. We report on the study of explanation approaches from the perspectives of recommender systems, explainable AI, and visualization research and propose the first cross-domain design space for explainers of item rankings. In addition, we leverage the descriptive power of the design space to characterize a) existing explainers and b) three main user groups involved in ranking explanation tasks. The generative power of the design space is a means for future designers and developers to create more target-oriented solutions in this only weakly exploited space.
可解释排名和排名模型的设计空间
项目排序系统支持用户进行多标准决策任务。用户需要相信排名和排名算法能够很好地反映用户偏好,同时避免系统错误和偏见。然而,今天只有少数方法可以帮助最终用户、模型开发人员和分析人员解释排名。我们从推荐系统、可解释人工智能和可视化研究的角度报道了解释方法的研究,并提出了第一个跨领域的项目排名解释器设计空间。此外,我们利用设计空间的描述能力来描述a)现有的解释器和b)涉及对解释任务进行排序的三个主要用户组。设计空间的生成能力是未来的设计师和开发人员在这个仅被薄弱利用的空间中创造更有针对性的解决方案的一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信