{"title":"A High Throughput No-Stall Golomb-Rice Hardware Decoder","authors":"R. Moussalli, W. Najjar, Xi Luo, Amna Khan","doi":"10.1109/FCCM.2013.9","DOIUrl":null,"url":null,"abstract":"Integer compression techniques can generally be classified as bit-wise and byte-wise approaches. Though at the cost of a larger processing time, bit-wise techniques typically result in a better compression ratio. The Golomb-Rice (GR) method is a bit-wise lossless technique applied to the compression of images, audio files and lists of inverted indices. However, since GR is a serial algorithm, decompression is regarded as a very slow process; to the best of our knowledge, all existing software and hardware native (non-modified) GR decoding engines operate bit-serially on the encoded stream. In this paper, we present (1) the first no-stall hardware architecture, capable of decompressing streams of integers compressed using the GR method, at a rate of several bytes (multiple integers) per hardware cycle; (2) a novel GR decoder based on the latter architecture is further detailed, operating at a peak rate of one integer per cycle. A thorough design space exploration study on the resulting resource utilization and throughput of the aforementioned approaches is presented. Furthermore, a performance study is provided, comparing software approaches to implementations of the novel hardware decoders. While occupying 10% of a Xilinx V6LX240T FPGA, the no-stall architecture core achieves a sustained throughput of over 7 Gbps.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Integer compression techniques can generally be classified as bit-wise and byte-wise approaches. Though at the cost of a larger processing time, bit-wise techniques typically result in a better compression ratio. The Golomb-Rice (GR) method is a bit-wise lossless technique applied to the compression of images, audio files and lists of inverted indices. However, since GR is a serial algorithm, decompression is regarded as a very slow process; to the best of our knowledge, all existing software and hardware native (non-modified) GR decoding engines operate bit-serially on the encoded stream. In this paper, we present (1) the first no-stall hardware architecture, capable of decompressing streams of integers compressed using the GR method, at a rate of several bytes (multiple integers) per hardware cycle; (2) a novel GR decoder based on the latter architecture is further detailed, operating at a peak rate of one integer per cycle. A thorough design space exploration study on the resulting resource utilization and throughput of the aforementioned approaches is presented. Furthermore, a performance study is provided, comparing software approaches to implementations of the novel hardware decoders. While occupying 10% of a Xilinx V6LX240T FPGA, the no-stall architecture core achieves a sustained throughput of over 7 Gbps.