Towards parameter-less support vector machines

J. Nalepa, Krzysztof Siminski, M. Kawulok
{"title":"Towards parameter-less support vector machines","authors":"J. Nalepa, Krzysztof Siminski, M. Kawulok","doi":"10.1109/ACPR.2015.7486496","DOIUrl":null,"url":null,"abstract":"Support vector machines (SVMs) are a widely-used machine learning technique, but they suffer from a significant drawback of high time and memory training complexity, which should be endured especially in big data problems. SVMs incorporate kernel functions - it involves selecting the kernel and induces an additional computational effort. In this paper, we address these issues and propose an SVM framework that automatically determines the kernel and selects data to train SVMs. It embodies the neuro-fuzzy system for creating the kernel along with the memetic algorithm to select training samples. Extensive experiments indicate that our approach enables obtaining high classification scores.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Support vector machines (SVMs) are a widely-used machine learning technique, but they suffer from a significant drawback of high time and memory training complexity, which should be endured especially in big data problems. SVMs incorporate kernel functions - it involves selecting the kernel and induces an additional computational effort. In this paper, we address these issues and propose an SVM framework that automatically determines the kernel and selects data to train SVMs. It embodies the neuro-fuzzy system for creating the kernel along with the memetic algorithm to select training samples. Extensive experiments indicate that our approach enables obtaining high classification scores.
走向无参数支持向量机
支持向量机(svm)是一种被广泛应用的机器学习技术,但其存在训练时间和记忆复杂度高的显著缺点,尤其是在大数据问题中。支持向量机包含核函数——它涉及到选择核,并引起额外的计算工作。在本文中,我们解决了这些问题,并提出了一个自动确定内核并选择数据来训练支持向量机的支持向量机框架。它体现了神经模糊系统的核生成和模因算法的训练样本选择。大量的实验表明,我们的方法可以获得较高的分类分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信