A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation

David Ifeoluwa Adelani, Jesujoba Oluwadara Alabi, Angela Fan, Julia Kreutzer, Xiaoyu Shen, Machel Reid, Dana Ruiter, D. Klakow, Peter Nabende, Ernie Chang, T. Gwadabe, Freshia Sackey, Bonaventure F. P. Dossou, Chris C. Emezue, Colin Leong, Michael Beukman, Shamsuddeen Hassan Muhammad, Guyo Dub Jarso, Oreen Yousuf, Andre Niyongabo Rubungo, Gilles Hacheme, Eric Peter Wairagala, Muhammad Umair Nasir, Benjamin Ayoade Ajibade, T. Ajayi, Yvonne Wambui Gitau, Jade Z. Abbott, Mohamed Ahmed, Millicent A. Ochieng, Anuoluwapo Aremu, Perez Ogayo, Jonathan Mukiibi, F. Kabore, Godson Kalipe, Derguene Mbaye, A. Tapo, V. M. Koagne, Edwin Munkoh-Buabeng, Valencia Wagner, Idris Abdulmumin, Ayodele Awokoya, Happy Buzaaba, Blessing K. Sibanda, Andiswa Bukula, Sam Manthalu
{"title":"A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation","authors":"David Ifeoluwa Adelani, Jesujoba Oluwadara Alabi, Angela Fan, Julia Kreutzer, Xiaoyu Shen, Machel Reid, Dana Ruiter, D. Klakow, Peter Nabende, Ernie Chang, T. Gwadabe, Freshia Sackey, Bonaventure F. P. Dossou, Chris C. Emezue, Colin Leong, Michael Beukman, Shamsuddeen Hassan Muhammad, Guyo Dub Jarso, Oreen Yousuf, Andre Niyongabo Rubungo, Gilles Hacheme, Eric Peter Wairagala, Muhammad Umair Nasir, Benjamin Ayoade Ajibade, T. Ajayi, Yvonne Wambui Gitau, Jade Z. Abbott, Mohamed Ahmed, Millicent A. Ochieng, Anuoluwapo Aremu, Perez Ogayo, Jonathan Mukiibi, F. Kabore, Godson Kalipe, Derguene Mbaye, A. Tapo, V. M. Koagne, Edwin Munkoh-Buabeng, Valencia Wagner, Idris Abdulmumin, Ayodele Awokoya, Happy Buzaaba, Blessing K. Sibanda, Andiswa Bukula, Sam Manthalu","doi":"10.48550/arXiv.2205.02022","DOIUrl":null,"url":null,"abstract":"Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.
几千个翻译有很长的路要走!利用预训练模型进行非洲新闻翻译
语言模型预训练的最新进展是利用大规模数据集来创建多语言模型。然而,在这些数据集中,低资源语言大多被忽略了。这主要是因为许多广泛使用的语言在网络上没有很好地表示,因此被排除在数据集的大规模抓取之外。此外,这些模型的下游用户仅限于选择最初为预训练选择的语言。这项工作探讨了如何最佳地利用现有的预训练模型来创建16种非洲语言的低资源翻译系统。我们关注两个问题:1)如何将预训练模型用于未包含在初始预训练中的语言?2)如何将生成的翻译模型有效地转移到新的领域?为了回答这些问题,我们创建了一个新的非洲新闻语料库,涵盖16种语言,其中8种语言不属于任何现有的评估数据集。我们证明,转移额外语言和额外领域的最有效策略是利用少量高质量的翻译数据来微调大型预训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信