J. W. A. V. D. Meijdenberg, L. Totu, H. Schiøler, J. Leth
{"title":"Stochastic Controller Design for multi-rotor UAV under Intermittent Localization","authors":"J. W. A. V. D. Meijdenberg, L. Totu, H. Schiøler, J. Leth","doi":"10.1109/ANZCC.2018.8606617","DOIUrl":null,"url":null,"abstract":"This paper presents a controller design for Unmanned Aerial Vehicles (UAV) of multi-rotor type, where global positioning is only intermittently available. The developed controllers are of state-space/observer type with switching, where discrete modes are determined by the momentary availability of absolute geographical localization. Control design is based on a generalized concept of stochastic ϵ-moment stability and conducted towards optimal robustness towards measurement intermittency. A simplistic but frequently applied mechanical model of the UAV under control, as well as the onboard inertial measurement unit (IMU), is presented and used as a basis for the proposed design methodology. Test flight results are presented with artificial measurement intermittency demonstrating the robustness of the designed controller.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a controller design for Unmanned Aerial Vehicles (UAV) of multi-rotor type, where global positioning is only intermittently available. The developed controllers are of state-space/observer type with switching, where discrete modes are determined by the momentary availability of absolute geographical localization. Control design is based on a generalized concept of stochastic ϵ-moment stability and conducted towards optimal robustness towards measurement intermittency. A simplistic but frequently applied mechanical model of the UAV under control, as well as the onboard inertial measurement unit (IMU), is presented and used as a basis for the proposed design methodology. Test flight results are presented with artificial measurement intermittency demonstrating the robustness of the designed controller.