Influenced Citation Analysis Using Modified Word Movers Distance (MWMD)

S. Muppidi, K. Thammi Reddy
{"title":"Influenced Citation Analysis Using Modified Word Movers Distance (MWMD)","authors":"S. Muppidi, K. Thammi Reddy","doi":"10.1109/INDISCON50162.2020.00067","DOIUrl":null,"url":null,"abstract":"Citation analysis is an essential part of the research to inculcate the potentiality of the work and giving credit to the researcher. Generally, citations are used by researchers for many purposes, however mainly it is used to show that the references influenced author's work. Now a day's most of the references influenced one way or other. The proposed model is used to find influenced citations in the scientific documents using a semantic approach rather than simple keyword matching. Generally, every scientific document contains references or a bibliography at the end of the document. The goal of the proposed technique is to discover the relevancy among scientific document and a list of reference papers in the same document in a semantic way. In this paper, the proposed work developed using the proposed semantic similarity measure called Modified Word Movers Distance (MWMD) applied to the deep learning model. Finally, the proposed work efficiently finds influenced citations percentage in the scientific documents.","PeriodicalId":371571,"journal":{"name":"2020 IEEE India Council International Subsections Conference (INDISCON)","volume":"581 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Council International Subsections Conference (INDISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDISCON50162.2020.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Citation analysis is an essential part of the research to inculcate the potentiality of the work and giving credit to the researcher. Generally, citations are used by researchers for many purposes, however mainly it is used to show that the references influenced author's work. Now a day's most of the references influenced one way or other. The proposed model is used to find influenced citations in the scientific documents using a semantic approach rather than simple keyword matching. Generally, every scientific document contains references or a bibliography at the end of the document. The goal of the proposed technique is to discover the relevancy among scientific document and a list of reference papers in the same document in a semantic way. In this paper, the proposed work developed using the proposed semantic similarity measure called Modified Word Movers Distance (MWMD) applied to the deep learning model. Finally, the proposed work efficiently finds influenced citations percentage in the scientific documents.
基于修正词移动距离(MWMD)的影响引文分析
引文分析是科研工作的重要组成部分,它能向科研人员灌输科研成果的潜力,给科研人员以荣誉。一般来说,研究人员使用引文有很多目的,但主要是用来表明参考文献影响了作者的工作。现在,一天中大多数的参考文献都会以这样或那样的方式产生影响。该模型使用语义方法而不是简单的关键词匹配来查找科学文献中受影响的引文。一般来说,每一篇科学文献的末尾都有参考文献或参考书目。该技术的目标是以语义的方式发现科学文献与同一文献中的参考文献列表之间的相关性。在本文中,提出的工作是使用被称为修正词移动距离(MWMD)的语义相似度量来开发的,该度量应用于深度学习模型。最后,提出的工作有效地找出了科学文献中的影响被引率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信