Multimodal search for effective image retrieval

H. Fu, Y.Y. Xu, H. Pao
{"title":"Multimodal search for effective image retrieval","authors":"H. Fu, Y.Y. Xu, H. Pao","doi":"10.1109/IWSSIP.2008.4604410","DOIUrl":null,"url":null,"abstract":"In this paper we present a multimodal approach for effectively searching and retrieving images. The proposed multimodal image query and retrieval (MIQR) method uses two or more types of query for accessing images - textual annotation associated with images and visual appearance, such as color, texture and positional features of objects in sample images. A user places a keyword-based query first and then retrieves desired images by visual content-based query. A prototype MIQR system was implemented and is available at http://140.113.216.66/WebImageSearch for online demo, and public evaluation. We also conducted experiments over a categorized Corel image collection and a non-categorized WWW image collection to show the performance of the proposed MIQR method.","PeriodicalId":322045,"journal":{"name":"2008 15th International Conference on Systems, Signals and Image Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 15th International Conference on Systems, Signals and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2008.4604410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present a multimodal approach for effectively searching and retrieving images. The proposed multimodal image query and retrieval (MIQR) method uses two or more types of query for accessing images - textual annotation associated with images and visual appearance, such as color, texture and positional features of objects in sample images. A user places a keyword-based query first and then retrieves desired images by visual content-based query. A prototype MIQR system was implemented and is available at http://140.113.216.66/WebImageSearch for online demo, and public evaluation. We also conducted experiments over a categorized Corel image collection and a non-categorized WWW image collection to show the performance of the proposed MIQR method.
多模式搜索,有效的图像检索
在本文中,我们提出了一种有效搜索和检索图像的多模态方法。提出的多模态图像查询与检索(MIQR)方法使用两种或两种以上类型的查询来访问图像——与图像相关的文本注释和视觉外观,如样本图像中物体的颜色、纹理和位置特征。用户首先放置一个基于关键字的查询,然后通过基于视觉内容的查询检索所需的图像。MIQR系统的原型已经实现,并可在http://140.113.216.66/WebImageSearch上进行在线演示和公众评估。我们还在分类的Corel图像集和未分类的WWW图像集上进行了实验,以展示所提出的MIQR方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信