Bio-molecular Circuit Design with Electronic Circuit Software and Cytomorphic Chips

Jonathan J. Y. Teo, Jaewook Kim, S. Woo, R. Sarpeshkar
{"title":"Bio-molecular Circuit Design with Electronic Circuit Software and Cytomorphic Chips","authors":"Jonathan J. Y. Teo, Jaewook Kim, S. Woo, R. Sarpeshkar","doi":"10.1109/BIOCAS.2019.8918684","DOIUrl":null,"url":null,"abstract":"We have previously described a technique for rigorously converting arbitrary biological circuits to electronic circuit schematics that represent them exactly and quantitatively [1], [5], [12]. The technique enables us to simulate and model an experimental microbial synthetic microbial amplifier with electronic circuits in Cadence, a widely used integrated-circuit design tool for very-large-scale silicon chips [2]. Our model is in excellent accord with measured biological data for both the closed-loop and open-loop operation of the biological operational amplifier. In addition, because chemical reaction flux and electronic transistor current obey the same Boltzmann laws of thermodynamics, such analog circuit schematics can be emulated rapidly in custom integrated circuit cytomorphic silicon chip hardware [4]–[9] including sophisticated nonlinear, stochastic, non-modular, and dynamical effects. We show that we can rapidly simulate and fit experimental biological data from our synthetic microbial operational amplifier with cytomorphic chips. Since cytomorphic chips are an example of digitally programmable analog chips [10], [11], they are easily amenable to electronic evolution, parameter exploration, and machine learning. The use of industry-standard circuit software and the rapid emulation on digitally programmable cytomorphic silicon chips suggests that biological design of synthetic circuits can be automated onto electronic platforms in the future.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8918684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We have previously described a technique for rigorously converting arbitrary biological circuits to electronic circuit schematics that represent them exactly and quantitatively [1], [5], [12]. The technique enables us to simulate and model an experimental microbial synthetic microbial amplifier with electronic circuits in Cadence, a widely used integrated-circuit design tool for very-large-scale silicon chips [2]. Our model is in excellent accord with measured biological data for both the closed-loop and open-loop operation of the biological operational amplifier. In addition, because chemical reaction flux and electronic transistor current obey the same Boltzmann laws of thermodynamics, such analog circuit schematics can be emulated rapidly in custom integrated circuit cytomorphic silicon chip hardware [4]–[9] including sophisticated nonlinear, stochastic, non-modular, and dynamical effects. We show that we can rapidly simulate and fit experimental biological data from our synthetic microbial operational amplifier with cytomorphic chips. Since cytomorphic chips are an example of digitally programmable analog chips [10], [11], they are easily amenable to electronic evolution, parameter exploration, and machine learning. The use of industry-standard circuit software and the rapid emulation on digitally programmable cytomorphic silicon chips suggests that biological design of synthetic circuits can be automated onto electronic platforms in the future.
利用电子电路软件和细胞形态芯片设计生物分子电路
我们之前已经描述了一种技术,可以严格地将任意生物电路转换为精确和定量地表示它们的电子电路原理图[1],[5],[12]。该技术使我们能够用Cadence(一种广泛用于超大尺寸硅芯片的集成电路设计工具)的电子电路模拟和建模一个实验性微生物合成微生物放大器。对于生物运算放大器的闭环和开环操作,我们的模型与实测的生物数据非常吻合。此外,由于化学反应通量和电子晶体管电流遵循相同的热力学玻尔兹曼定律,这种模拟电路原理图可以在定制集成电路细胞形态硅片硬件[4]-[9]中快速模拟,包括复杂的非线性、随机、非模块化和动态效应。我们表明,我们可以快速模拟和拟合实验生物学数据从我们的合成微生物运算放大器与细胞形态芯片。由于细胞形态芯片是数字可编程模拟芯片[10],[11]的一个例子,它们很容易适应电子进化,参数探索和机器学习。工业标准电路软件的使用和数字可编程细胞形态硅芯片的快速仿真表明,合成电路的生物设计在未来可以自动化到电子平台上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信