TinyPedSeg: A Tiny Pedestrian Segmentation Benchmark for Top-Down Drone Images

Y. Sahin, Elvin Abdinli, M. A. Aydin, Gozde Unal
{"title":"TinyPedSeg: A Tiny Pedestrian Segmentation Benchmark for Top-Down Drone Images","authors":"Y. Sahin, Elvin Abdinli, M. A. Aydin, Gozde Unal","doi":"10.23919/MVA57639.2023.10215829","DOIUrl":null,"url":null,"abstract":"The usage of Unmanned Aerial Vehicles (UAVs) has significantly increased in various fields such as surveillance, agriculture, transportation, and military operations. However, the integration of UAVs in these applications requires the ability to navigate autonomously and detect/segment objects in real-time, which can be achieved through the use of neural networks. Despite object detection for RGB images/videos obtained from UAVs are widely studied before, limited effort has been made for segmentation from top-down aerial images. Considering the case in which the UAV is extremely high from the ground, the task can be formed as tiny object segmentation. Thus, inspired from the TinyPerson dataset which focuses on person detection from UAVs, we present TinyPedSeg, which contains 2563 pedestrians in 320 images. Specialized only in pedestrian segmentation, our dataset presents more informativeness than other UAV segmentation datasets. The dataset and the baseline codes are available at https://github.com/ituvisionlab/tinypedseg","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The usage of Unmanned Aerial Vehicles (UAVs) has significantly increased in various fields such as surveillance, agriculture, transportation, and military operations. However, the integration of UAVs in these applications requires the ability to navigate autonomously and detect/segment objects in real-time, which can be achieved through the use of neural networks. Despite object detection for RGB images/videos obtained from UAVs are widely studied before, limited effort has been made for segmentation from top-down aerial images. Considering the case in which the UAV is extremely high from the ground, the task can be formed as tiny object segmentation. Thus, inspired from the TinyPerson dataset which focuses on person detection from UAVs, we present TinyPedSeg, which contains 2563 pedestrians in 320 images. Specialized only in pedestrian segmentation, our dataset presents more informativeness than other UAV segmentation datasets. The dataset and the baseline codes are available at https://github.com/ituvisionlab/tinypedseg
TinyPedSeg:一个微小的行人分割基准自上而下无人机图像
无人驾驶飞行器(uav)在监视、农业、运输、军事行动等各个领域的使用显著增加。然而,在这些应用中集成无人机需要自主导航和实时检测/分割物体的能力,这可以通过使用神经网络来实现。尽管以前对无人机获得的RGB图像/视频的目标检测进行了广泛的研究,但对自上而下航拍图像的分割研究有限。考虑到无人机距离地面极高的情况,任务可以形成为微小目标分割。因此,受专注于无人机人员检测的TinyPerson数据集的启发,我们提出了TinyPedSeg,它包含320张图像中的2563名行人。我们的数据集只专注于行人分割,比其他无人机分割数据集具有更多的信息。数据集和基线代码可在https://github.com/ituvisionlab/tinypedseg上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信