On orthogonal wavelets with oversampling property

X. Xia, Zhen Zhang
{"title":"On orthogonal wavelets with oversampling property","authors":"X. Xia, Zhen Zhang","doi":"10.1109/ISIT.1994.394819","DOIUrl":null,"url":null,"abstract":"Considers the orthogonal scaling functions with the following general oversampling property: for a fixed integer J/spl ges/0 and any f/spl isin/V/sub 0/, f(t)=/spl Sigma//sub n/f(n/(2/sup J/))/spl phi/(2/sup J/t-n). The authors call that an orthogonal scaling function /spl phi/(t) satisfying the above equation has the oversampling property with sampling rate 2/sup -J/ and denote all such scaling functions by S/sub J/. Thus, S/sub 0/ consists of all orthogonal scaling functions with the sampling property and S/sub J/ /spl sub/S/sub J+1/ for J=0, 1, 2, .... The results in Walter (1993) also show that S/sub 0//spl ne/S/sub 1/, i.e., the space of the orthogonal scaling functions with the sampling property is a proper subspace of the one of the orthogonal scaling functions with the oversampling property. Let S/sub e/ and S/sub c/ denote all orthogonal scaling functions with exponential decay and compact support, respectively. The present authors prove that S/sub 0//spl cap/S/sub e/=S/sub J//spl cap/S/sub e/ and S/sub 0//spl cap/S/sub c/=S/sub J//spl cap/S/sub c/.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Considers the orthogonal scaling functions with the following general oversampling property: for a fixed integer J/spl ges/0 and any f/spl isin/V/sub 0/, f(t)=/spl Sigma//sub n/f(n/(2/sup J/))/spl phi/(2/sup J/t-n). The authors call that an orthogonal scaling function /spl phi/(t) satisfying the above equation has the oversampling property with sampling rate 2/sup -J/ and denote all such scaling functions by S/sub J/. Thus, S/sub 0/ consists of all orthogonal scaling functions with the sampling property and S/sub J/ /spl sub/S/sub J+1/ for J=0, 1, 2, .... The results in Walter (1993) also show that S/sub 0//spl ne/S/sub 1/, i.e., the space of the orthogonal scaling functions with the sampling property is a proper subspace of the one of the orthogonal scaling functions with the oversampling property. Let S/sub e/ and S/sub c/ denote all orthogonal scaling functions with exponential decay and compact support, respectively. The present authors prove that S/sub 0//spl cap/S/sub e/=S/sub J//spl cap/S/sub e/ and S/sub 0//spl cap/S/sub c/=S/sub J//spl cap/S/sub c/.<>
具有过采样性质的正交小波
考虑具有以下一般过采样性质的正交尺度函数:对于固定整数J/spl ges/0和任意f/spl isin/V/sub 0/, f(t)=/spl Sigma//sub n/f(n/(2/sup J/))/spl phi/(2/sup J/t-n)。作者称满足上述方程的正交标度函数/spl φ /(t)具有采样率为2/sup -J/的过采样性质,并用S/sub J/表示所有这样的标度函数。因此,S/sub 0/由所有具有采样性质的正交标度函数和S/sub J/ /spl sub/S/sub J+1/ (J= 0,1,2, ....)组成Walter(1993)的结果也表明S/sub 0//spl ne/S/sub 1/,即具有采样性质的正交标度函数的空间是具有过采样性质的正交标度函数的一个固有子空间。设S/ e/和S/ c/分别表示所有具有指数衰减和紧支持的正交尺度函数。本文证明S/sub 0//spl cap/S/sub e/=S/sub J//spl cap/S/sub e/和S/sub 0//spl cap/S/sub c/=S/sub J//spl cap/S/sub c/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信