Multi-target localization using frequency diverse coprime arrays with coprime frequency offsets

Si Qin, Yimin D. Zhang, M. Amin
{"title":"Multi-target localization using frequency diverse coprime arrays with coprime frequency offsets","authors":"Si Qin, Yimin D. Zhang, M. Amin","doi":"10.1109/RADAR.2016.7485154","DOIUrl":null,"url":null,"abstract":"The performance of the frequency diverse array (FDA) radar is fundamentally limited by the geometry of the array and the frequency offset. In this paper, we overcome this limitation by introducing a novel sparsity-based multi-target localization approach incorporating both coprime array and coprime frequency offset. The covariance matrix of the received signals corresponding to all sensors and employed frequencies is formulated to generate a space-frequency virtual difference coarrays. The proposed approach enables the localization of up to O(M2 N2) targets using O(M + N) physical sensors with O(M + N) frequencies for a coprime pair of M and N. The joint DOA and range estimation is cast as a sparse reconstruction problem and solved using the complex multi-task Bayesian compressive sensing technique.","PeriodicalId":185932,"journal":{"name":"2016 IEEE Radar Conference (RadarConf)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.7485154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The performance of the frequency diverse array (FDA) radar is fundamentally limited by the geometry of the array and the frequency offset. In this paper, we overcome this limitation by introducing a novel sparsity-based multi-target localization approach incorporating both coprime array and coprime frequency offset. The covariance matrix of the received signals corresponding to all sensors and employed frequencies is formulated to generate a space-frequency virtual difference coarrays. The proposed approach enables the localization of up to O(M2 N2) targets using O(M + N) physical sensors with O(M + N) frequencies for a coprime pair of M and N. The joint DOA and range estimation is cast as a sparse reconstruction problem and solved using the complex multi-task Bayesian compressive sensing technique.
多目标定位使用不同频率的同素阵列与同素频率偏移
频率变化阵列(FDA)雷达的性能从根本上受到阵列几何形状和频率偏移的限制。在本文中,我们通过引入一种新的基于稀疏性的多目标定位方法来克服这一限制,该方法结合了协素数阵列和协素数频率偏移。将接收信号的协方差矩阵与所有传感器和所用频率相对应,形成空频虚差共阵。该方法利用O(M + N)个频率为O(M + N)的物理传感器,对M和N的一组素对实现最多O(M2 N2)个目标的定位。该方法将联合DOA和距离估计转化为一个稀疏重建问题,利用复杂的多任务贝叶斯压缩感知技术进行求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信