Conjugate Unscented Transform rules for uniform probability density functions

Nagavenkat Adurthi, P. Singla, T. Singh
{"title":"Conjugate Unscented Transform rules for uniform probability density functions","authors":"Nagavenkat Adurthi, P. Singla, T. Singh","doi":"10.1109/ACC.2013.6580202","DOIUrl":null,"url":null,"abstract":"This paper presents a few novel quadrature rules to evaluate expectation integrals with respect to a uniform probability density function. In 1-dimensional expectation integrals the most widely used numerical method is the Gauss-Legendre quadratures as they are exact for polynomials. As for a generic N-dimensional integral, the tensor product of 1-dimensional Gauss-Legendre quadratures results in an undesirable exponential growth of the number of points. The cubature rules proposed in this paper can be used as a direct alternative to the Gauss-Legendre quadrature rules as they are also designed to exactly evaluate the integrals of polynomials but use only a small fraction of the number of points. In addition, they also have all positive weights.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents a few novel quadrature rules to evaluate expectation integrals with respect to a uniform probability density function. In 1-dimensional expectation integrals the most widely used numerical method is the Gauss-Legendre quadratures as they are exact for polynomials. As for a generic N-dimensional integral, the tensor product of 1-dimensional Gauss-Legendre quadratures results in an undesirable exponential growth of the number of points. The cubature rules proposed in this paper can be used as a direct alternative to the Gauss-Legendre quadrature rules as they are also designed to exactly evaluate the integrals of polynomials but use only a small fraction of the number of points. In addition, they also have all positive weights.
均匀概率密度函数的共轭Unscented变换规则
本文给出了关于均匀概率密度函数求期望积分的几个新的求积分规则。在一维期望积分中,最广泛使用的数值方法是高斯-勒让德正交,因为它们对多项式是精确的。对于一般的n维积分,一维高斯-勒让德正交的张量积会导致点的数量呈指数增长。本文提出的立方体规则可以直接替代高斯-勒让德正交规则,因为它们也被设计为精确地计算多项式的积分,但只使用一小部分点的数量。此外,它们的权值也都是正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信