{"title":"Magneto-Inductive NEtworked Rescue System (MINERS): Taking sensor networks underground","authors":"A. Markham, N. Trigoni","doi":"10.1145/2185677.2185746","DOIUrl":null,"url":null,"abstract":"Wireless underground networks are an emerging technology which have application in a number of scenarios. For example, in a mining disaster, flooding or a collapse can isolate portions of underground tunnels, severing wired communication links and preventing radio communication. In this pa-per, we explore the use of low frequency magnetic fields for communication, and present a new hardware platform that features triaxial transmitter/receiverantenna loops. We point out that the fundamental problem of the magnetic channel is the limited bitrate at long ranges, due to the extreme path loss of 60 dB/decade. To this end, we present two complementary techniques to address this limitation. Firstly, we demonstrate magnetic vector modulation, a technique which modulates the three dimensional orientation of the magnetic vector. This increases the gross bitrate by a factor of over 2.5, without an increase in transmission power or bandwidth. Secondly, we show how in a multi-hop network latencies can be dramatically reduced by receiving multiple parallel streams of frequency multiplexed data in a many-to-one configuration. These techniques are demonstrated on a working hardware platform, which for flexible operation, features a software defined magnetic transceiver. Typical communication range is approximately 30 m through rock.","PeriodicalId":231003,"journal":{"name":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185677.2185746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94
Abstract
Wireless underground networks are an emerging technology which have application in a number of scenarios. For example, in a mining disaster, flooding or a collapse can isolate portions of underground tunnels, severing wired communication links and preventing radio communication. In this pa-per, we explore the use of low frequency magnetic fields for communication, and present a new hardware platform that features triaxial transmitter/receiverantenna loops. We point out that the fundamental problem of the magnetic channel is the limited bitrate at long ranges, due to the extreme path loss of 60 dB/decade. To this end, we present two complementary techniques to address this limitation. Firstly, we demonstrate magnetic vector modulation, a technique which modulates the three dimensional orientation of the magnetic vector. This increases the gross bitrate by a factor of over 2.5, without an increase in transmission power or bandwidth. Secondly, we show how in a multi-hop network latencies can be dramatically reduced by receiving multiple parallel streams of frequency multiplexed data in a many-to-one configuration. These techniques are demonstrated on a working hardware platform, which for flexible operation, features a software defined magnetic transceiver. Typical communication range is approximately 30 m through rock.