Xinlin Wang, Xiangwei Zhang, Haiqin Zhou, Chunquan Li, Zhiming Sun
{"title":"Crystallization regulation of Fe0@Fe3O4 using a g-C3N4/diatomite composite for enhancing photocatalytic peroxymonosulfate activation","authors":"Xinlin Wang, Xiangwei Zhang, Haiqin Zhou, Chunquan Li, Zhiming Sun","doi":"10.20517/mmm.2022.06","DOIUrl":null,"url":null,"abstract":"Photocatalysis and persulfate synergistic catalysis have recently become promising technologies for degrading refractory organic contaminants in effluents. In this work, Fe0@Fe3O4 is successfully immobilized on a N-deficient g-C3N4/diatomite composite (NGD) via a simple self-assembly process. The structural characteristics and peroxymonosulfate activation ability of the composite under visible-light irradiation are explored in detail. Notably, the introduction of NGD affects the crystallinity and morphology of Fe0@Fe3O4, forming homogenously distributed nanoparticles rather than irregular and agglomerated crystals with rod-like structures. The synthesized Fe0@Fe3O4/N-deficient g-C3N4/diatomite composite (FNGD) exhibits a superior removal percentage of bisphenol A (> 95% within 15 min). Furthermore, its degradation rate constant (k) is ~59 and ~27 times higher than those of NGD and bare Fe0@Fe3O4, respectively. Moreover, holes (hvb+), singlet oxygen (1O2) and superoxide free radicals (•O2-) play a major role in the FNGD/peroxymonosulfate/visible system based on radial quenching experiments and electron paramagnetic resonance spectra. Overall, this study provides novel insights into visible light-assisted peroxymonosulfate activation by the g-C3N4/mineral-based composite for wastewater treatment.","PeriodicalId":319570,"journal":{"name":"Minerals and Mineral Materials","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals and Mineral Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/mmm.2022.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalysis and persulfate synergistic catalysis have recently become promising technologies for degrading refractory organic contaminants in effluents. In this work, Fe0@Fe3O4 is successfully immobilized on a N-deficient g-C3N4/diatomite composite (NGD) via a simple self-assembly process. The structural characteristics and peroxymonosulfate activation ability of the composite under visible-light irradiation are explored in detail. Notably, the introduction of NGD affects the crystallinity and morphology of Fe0@Fe3O4, forming homogenously distributed nanoparticles rather than irregular and agglomerated crystals with rod-like structures. The synthesized Fe0@Fe3O4/N-deficient g-C3N4/diatomite composite (FNGD) exhibits a superior removal percentage of bisphenol A (> 95% within 15 min). Furthermore, its degradation rate constant (k) is ~59 and ~27 times higher than those of NGD and bare Fe0@Fe3O4, respectively. Moreover, holes (hvb+), singlet oxygen (1O2) and superoxide free radicals (•O2-) play a major role in the FNGD/peroxymonosulfate/visible system based on radial quenching experiments and electron paramagnetic resonance spectra. Overall, this study provides novel insights into visible light-assisted peroxymonosulfate activation by the g-C3N4/mineral-based composite for wastewater treatment.