Intra Frame Prediction for Video Coding Using a Conditional Autoencoder Approach

Fabian Brand, Jürgen Seiler, André Kaup
{"title":"Intra Frame Prediction for Video Coding Using a Conditional Autoencoder Approach","authors":"Fabian Brand, Jürgen Seiler, André Kaup","doi":"10.1109/PCS48520.2019.8954546","DOIUrl":null,"url":null,"abstract":"Intra prediction is a vital component of most modern image and video codecs. State of the art video codecs like High Efficiency Video Coding (HEVC) or the upcoming Versatile Video Coding (VVC) use a high number of directional modes. With the recent advances in deep learning, it is now possible to use artificial neural networks for intra frame prediction. Previously published approaches usually add additional ANN based modes or replace all modes by training several networks. In our approach, we use a single autoencoder network to first compress the original with help of already transmitted pixels to four parameters. We then use the parameters together with this support area to generate a prediction for the block. This way, we are able to replace all angular intra modes by a single ANN. In the experiments we compare our method with the intra prediction method currently used in the VVC Test Model (VTM). Using our method, we are able to gain up to 0.85 dB prediction PSNR with a comparable amount of side information or reduce the amount of side information by 2 bit per prediction unit with similar PSNR.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"441 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Intra prediction is a vital component of most modern image and video codecs. State of the art video codecs like High Efficiency Video Coding (HEVC) or the upcoming Versatile Video Coding (VVC) use a high number of directional modes. With the recent advances in deep learning, it is now possible to use artificial neural networks for intra frame prediction. Previously published approaches usually add additional ANN based modes or replace all modes by training several networks. In our approach, we use a single autoencoder network to first compress the original with help of already transmitted pixels to four parameters. We then use the parameters together with this support area to generate a prediction for the block. This way, we are able to replace all angular intra modes by a single ANN. In the experiments we compare our method with the intra prediction method currently used in the VVC Test Model (VTM). Using our method, we are able to gain up to 0.85 dB prediction PSNR with a comparable amount of side information or reduce the amount of side information by 2 bit per prediction unit with similar PSNR.
基于条件自编码器的视频编码帧内预测
帧内预测是大多数现代图像和视频编解码器的重要组成部分。最先进的视频编解码器,如高效视频编码(HEVC)或即将推出的多功能视频编码(VVC)使用大量的定向模式。随着深度学习的最新进展,现在可以使用人工神经网络进行帧内预测。以前发表的方法通常是添加额外的基于人工神经网络的模式,或者通过训练多个网络来替换所有模式。在我们的方法中,我们使用单个自编码器网络首先在已经传输的像素的帮助下将原始图像压缩为四个参数。然后,我们使用这些参数和这个支持区域来生成块的预测。这样,我们就可以用一个人工神经网络来替换所有的角内模式。在实验中,我们将该方法与目前在VVC测试模型(VTM)中使用的内预测方法进行了比较。使用我们的方法,我们能够在具有相当数量的侧信息的情况下获得高达0.85 dB的预测PSNR,或者在具有相似PSNR的每个预测单元中减少2比特的侧信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信