A Spatial Domain Sigma-Delta Modulation via Discrete-Time Cellular Neural Networks

H. Aomori, T. Otake, N. Takahashi, Mamoru Tanaka
{"title":"A Spatial Domain Sigma-Delta Modulation via Discrete-Time Cellular Neural Networks","authors":"H. Aomori, T. Otake, N. Takahashi, Mamoru Tanaka","doi":"10.1109/IJCNN.2007.4371237","DOIUrl":null,"url":null,"abstract":"In this paper, a novel spatial domain sigma-delta modulation using two-layered discrete-time cellular neural networks (DT-CNNs) is proposed. Since the nature of CNN dynamics with the output function which has two saturation regions is to binarize the input image, the dynamics has a capabilities for a digital image halftoning. In the proposed architecture, the nonlinear interpolative dynamics is exploited to obtain an optimal reconstruction image from the bilevel modulated image, and quantization noises are spatially distributed by the noise shaping property of the dynamics. The experimental results show a excellent reconstruction performance and capabilities of the CNN as a sigma-delta modulation.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel spatial domain sigma-delta modulation using two-layered discrete-time cellular neural networks (DT-CNNs) is proposed. Since the nature of CNN dynamics with the output function which has two saturation regions is to binarize the input image, the dynamics has a capabilities for a digital image halftoning. In the proposed architecture, the nonlinear interpolative dynamics is exploited to obtain an optimal reconstruction image from the bilevel modulated image, and quantization noises are spatially distributed by the noise shaping property of the dynamics. The experimental results show a excellent reconstruction performance and capabilities of the CNN as a sigma-delta modulation.
基于离散时间细胞神经网络的空间域Sigma-Delta调制
本文提出了一种利用双层离散时间细胞神经网络(dt - cnn)的空间域sigma-delta调制方法。由于具有两个饱和区域的输出函数的CNN动态的本质是对输入图像进行二值化,因此该动态具有数字图像半色调的能力。在该结构中,利用非线性插值动力学从双电平调制图像中获得最优重构图像,并利用动力学的噪声整形特性对量化噪声进行空间分布。实验结果表明,CNN具有良好的重构性能和作为σ - δ调制的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信