Generate Realistic Traffic Sign Image using Deep Convolutional Generative Adversarial Networks

Yan-Ting Liu, R. Chen, Christine Dewi
{"title":"Generate Realistic Traffic Sign Image using Deep Convolutional Generative Adversarial Networks","authors":"Yan-Ting Liu, R. Chen, Christine Dewi","doi":"10.1109/DSC49826.2021.9346266","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) achieve excellent in traffic sign detection and recognition with sufficient annotated training data. The quality of the whole vision system based on neural networks depend on the dataset. However, it is complicated to find traffic sign datasets from most of the countries of the world. In this context, Deep Convolutional Generative Adversarial Networks (DCGAN) can synthesize realistic and diverse additional training images to fill the data lack in the real image distribution. This paper mainly discusses how is the quality of the pictures generated by the DCGAN with various parameters. We use an image with a different number and size for training. Further, the Structural Similarity Index (SSIM) and MSE were used to evaluate the quality of the image. Our work measured SSIM values between generated images and corresponding real images. The generated images show high similarity with the actual image while using more images for training. The highest SSIM values reached when using 200 total images as input and images size 32×32.","PeriodicalId":184504,"journal":{"name":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC49826.2021.9346266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Convolutional Neural Networks (CNNs) achieve excellent in traffic sign detection and recognition with sufficient annotated training data. The quality of the whole vision system based on neural networks depend on the dataset. However, it is complicated to find traffic sign datasets from most of the countries of the world. In this context, Deep Convolutional Generative Adversarial Networks (DCGAN) can synthesize realistic and diverse additional training images to fill the data lack in the real image distribution. This paper mainly discusses how is the quality of the pictures generated by the DCGAN with various parameters. We use an image with a different number and size for training. Further, the Structural Similarity Index (SSIM) and MSE were used to evaluate the quality of the image. Our work measured SSIM values between generated images and corresponding real images. The generated images show high similarity with the actual image while using more images for training. The highest SSIM values reached when using 200 total images as input and images size 32×32.
使用深度卷积生成对抗网络生成逼真的交通标志图像
卷积神经网络(Convolutional Neural Networks, cnn)在有足够的带注释的训练数据的情况下,在交通标志检测和识别方面取得了优异的成绩。整个基于神经网络的视觉系统的质量取决于数据集。然而,寻找世界上大多数国家的交通标志数据集是很复杂的。在这种情况下,深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Networks, DCGAN)可以合成真实多样的附加训练图像,以填补真实图像分布中的数据不足。本文主要讨论了DCGAN在不同参数下生成的图像质量如何。我们使用不同数量和大小的图像进行训练。进一步,使用结构相似指数(SSIM)和MSE来评价图像的质量。我们的工作测量了生成的图像和相应的真实图像之间的SSIM值。当使用更多的图像进行训练时,生成的图像与实际图像具有较高的相似性。当使用总共200张图像作为输入和图像大小32×32时达到的最高SSIM值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信