PLMP: A Method to Map the Linguistic Markers of the Social Discourse onto its Semantic Network

T. Erseghe, L. Badia, Lejla Dzanko, Caterina Suitner
{"title":"PLMP: A Method to Map the Linguistic Markers of the Social Discourse onto its Semantic Network","authors":"T. Erseghe, L. Badia, Lejla Dzanko, Caterina Suitner","doi":"10.1109/ASONAM55673.2022.10068643","DOIUrl":null,"url":null,"abstract":"A modern interdisciplinary analysis of social networks implies detecting and investigating relevant socio-psychological linguistic markers that carry insight on the nature and characteristics of the social discourse. Associating markers to specific words is a further important step, allowing for an even richer interpretation. By taking as a working example the social discourse in Twitter, we propose a scalable method called PageRank-like marker projection (PLMP) following a rationale inspired by PageRank to fully exploit the interdependencies in a semantic network, so as to meaningfully project markers from a social discourse level (tweets) to its semantic elements (words). The effectiveness of PLMP is shown with an application example on calls to online collective action.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"19 2-6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A modern interdisciplinary analysis of social networks implies detecting and investigating relevant socio-psychological linguistic markers that carry insight on the nature and characteristics of the social discourse. Associating markers to specific words is a further important step, allowing for an even richer interpretation. By taking as a working example the social discourse in Twitter, we propose a scalable method called PageRank-like marker projection (PLMP) following a rationale inspired by PageRank to fully exploit the interdependencies in a semantic network, so as to meaningfully project markers from a social discourse level (tweets) to its semantic elements (words). The effectiveness of PLMP is shown with an application example on calls to online collective action.
PLMP:一种将社会话语的语言标记映射到其语义网络的方法
社会网络的现代跨学科分析意味着检测和调查相关的社会心理语言标记,这些标记可以洞察社会话语的性质和特征。将标记与特定的单词关联是更重要的一步,允许更丰富的解释。以Twitter中的社会话语为例,我们提出了一种可扩展的方法,称为类PageRank标记投影(PLMP),该方法受到PageRank的启发,充分利用语义网络中的相互依赖性,从而有意义地将标记从社会话语层面(tweets)投射到其语义元素(words)上。通过一个在线集体行动呼叫的应用实例,说明了PLMP的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信