Ethical Data Curation for AI: An Approach based on Feminist Epistemology and Critical Theories of Race

Susan Leavy, E. Siapera, B. O’Sullivan
{"title":"Ethical Data Curation for AI: An Approach based on Feminist Epistemology and Critical Theories of Race","authors":"Susan Leavy, E. Siapera, B. O’Sullivan","doi":"10.1145/3461702.3462598","DOIUrl":null,"url":null,"abstract":"The potential for bias embedded in data to lead to the perpetuation of social injustice though Artificial Intelligence (AI) necessitates an urgent reform of data curation practices for AI systems, especially those based on machine learning. Without appropriate ethical and regulatory frameworks there is a risk that decades of advances in human rights and civil liberties may be undermined. This paper proposes an approach to data curation for AI, grounded in feminist epistemology and informed by critical theories of race and feminist principles. The objective of this approach is to support critical evaluation of the social dynamics of power embedded in data for AI systems. We propose a set of fundamental guiding principles for ethical data curation that address the social construction of knowledge, call for inclusion of subjugated and new forms of knowledge, support critical evaluation of theoretical concepts within data and recognise the reflexive nature of knowledge. In developing this ethical framework for data curation, we aim to contribute to a virtue ethics for AI and ensure protection of fundamental and human rights.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The potential for bias embedded in data to lead to the perpetuation of social injustice though Artificial Intelligence (AI) necessitates an urgent reform of data curation practices for AI systems, especially those based on machine learning. Without appropriate ethical and regulatory frameworks there is a risk that decades of advances in human rights and civil liberties may be undermined. This paper proposes an approach to data curation for AI, grounded in feminist epistemology and informed by critical theories of race and feminist principles. The objective of this approach is to support critical evaluation of the social dynamics of power embedded in data for AI systems. We propose a set of fundamental guiding principles for ethical data curation that address the social construction of knowledge, call for inclusion of subjugated and new forms of knowledge, support critical evaluation of theoretical concepts within data and recognise the reflexive nature of knowledge. In developing this ethical framework for data curation, we aim to contribute to a virtue ethics for AI and ensure protection of fundamental and human rights.
人工智能的伦理数据管理:基于女性主义认识论和种族批判理论的方法
通过人工智能(AI),数据中嵌入的偏见可能导致社会不公正的延续,这需要对人工智能系统的数据管理实践进行紧急改革,特别是基于机器学习的数据管理实践。如果没有适当的道德和监管框架,几十年来在人权和公民自由方面取得的进展就有可能遭到破坏。本文提出了一种基于女权主义认识论的人工智能数据管理方法,并以种族和女权主义原则的批判理论为基础。这种方法的目标是支持对人工智能系统数据中嵌入的权力的社会动态进行批判性评估。我们提出了一套伦理数据管理的基本指导原则,这些原则涉及知识的社会建构,呼吁包括已被征服的和新的知识形式,支持对数据中理论概念的批判性评估,并认识到知识的反身性。在制定这一数据管理伦理框架的过程中,我们的目标是为人工智能的美德伦理做出贡献,并确保对基本人权的保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信