{"title":"Intelligent Descriptor of Loop Closure Detection for Visual SLAM Systems","authors":"Kai Quan, B. Xiao, Yiran Wei","doi":"10.1109/CCDC.2019.8833325","DOIUrl":null,"url":null,"abstract":"This paper is concerned of the loop closure detection problem, which is one of the most critical parts for visual Simultaneous Localization and Mapping (SLAM) systems. Most of state-of-the-art methods use hand-crafted features and bag-of-visual-words (BoVW) to tackle this problem, but not all SALM systems require hand-crafted feature. With the improvement of machine learning, Convolution Neural Networks (CNNs) has a significant effect on feature detection. This paper proposes a loop closure detection method without hand-crafted feature. We extract the image features through CNNs, and reduce the dimensions of the feature values with t-distributed stochastic neighbor embedding (T-SNE). And then we get a dictionary of two-dimensional feature points, which are obtained by T-SNE. Combined with the new similarity judgment method, the BoVW model based on CNNs is constructed. The new method can solve the loop closure detection of SLAM systems without hand-crafted features. Based on the characteristics of CNNs, the performance of scale-invariant feature transform has been significantly improved.","PeriodicalId":254705,"journal":{"name":"2019 Chinese Control And Decision Conference (CCDC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2019.8833325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper is concerned of the loop closure detection problem, which is one of the most critical parts for visual Simultaneous Localization and Mapping (SLAM) systems. Most of state-of-the-art methods use hand-crafted features and bag-of-visual-words (BoVW) to tackle this problem, but not all SALM systems require hand-crafted feature. With the improvement of machine learning, Convolution Neural Networks (CNNs) has a significant effect on feature detection. This paper proposes a loop closure detection method without hand-crafted feature. We extract the image features through CNNs, and reduce the dimensions of the feature values with t-distributed stochastic neighbor embedding (T-SNE). And then we get a dictionary of two-dimensional feature points, which are obtained by T-SNE. Combined with the new similarity judgment method, the BoVW model based on CNNs is constructed. The new method can solve the loop closure detection of SLAM systems without hand-crafted features. Based on the characteristics of CNNs, the performance of scale-invariant feature transform has been significantly improved.