Dredging a data lake: decentralized metadata extraction

Tyler J. Skluzacek
{"title":"Dredging a data lake: decentralized metadata extraction","authors":"Tyler J. Skluzacek","doi":"10.1145/3366624.3368170","DOIUrl":null,"url":null,"abstract":"The rapid generation of data from distributed IoT devices, scientific instruments, and compute clusters presents unique data management challenges. The influx of large, heterogeneous, and complex data causes repositories to become siloed or generally unsearchable---both problems not currently well-addressed by distributed file systems. In this work, we propose Xtract, a serverless middleware to extract metadata from files spread across heterogeneous edge computing resources. In my future work, we intend to study how Xtract can automatically construct file extraction workflows subject to users' cost, time, security, and compute allocation constraints. To this end, Xtract will enable the creation of a searchable centralized index across distributed data collections.","PeriodicalId":376496,"journal":{"name":"Proceedings of the 20th International Middleware Conference Doctoral Symposium","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Middleware Conference Doctoral Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366624.3368170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The rapid generation of data from distributed IoT devices, scientific instruments, and compute clusters presents unique data management challenges. The influx of large, heterogeneous, and complex data causes repositories to become siloed or generally unsearchable---both problems not currently well-addressed by distributed file systems. In this work, we propose Xtract, a serverless middleware to extract metadata from files spread across heterogeneous edge computing resources. In my future work, we intend to study how Xtract can automatically construct file extraction workflows subject to users' cost, time, security, and compute allocation constraints. To this end, Xtract will enable the creation of a searchable centralized index across distributed data collections.
疏浚数据湖:去中心化元数据提取
分布式物联网设备、科学仪器和计算集群的数据快速生成带来了独特的数据管理挑战。大量、异构和复杂数据的涌入导致存储库变得孤立或通常无法搜索——这两个问题目前还没有被分布式文件系统很好地解决。在这项工作中,我们提出了Xtract,一种无服务器中间件,用于从分布在异构边缘计算资源中的文件中提取元数据。在我未来的工作中,我们打算研究Xtract如何在用户的成本、时间、安全性和计算分配约束下自动构建文件提取工作流。为此,Xtract将支持跨分布式数据集合创建可搜索的集中式索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信