Semi-Supervised Life-Long Learning with Application to Sensing

Qiuhua Liu, X. Liao, L. Carin
{"title":"Semi-Supervised Life-Long Learning with Application to Sensing","authors":"Qiuhua Liu, X. Liao, L. Carin","doi":"10.1109/CAMSAP.2007.4497950","DOIUrl":null,"url":null,"abstract":"We present a semi-supervised multitask learning (MTL) framework, where we have multiple partially labeled data manifolds, each defining a classification task for which we wish to design a semi-supervised classifier. These different data sets may be observed simultaneously, or over the sensor \"lifetime\". We propose a soft sharing prior over the parameters of all classifiers and learn all tasks jointly. The soft-sharing prior enables any task to robustly borrow information from related tasks. The semi-supervised MTL combines the advantages of semi-supervised learning and multitask learning, thus further improving the generalization performance of each classifier. Our MTL (or life-long learning) framework is based on our previous semi-supervised learning formulation, termed neighborhood-based classifier (NeBC) [1]. The performance of the semi-supervised MTL is validated by experimental results on several sensing data sets.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a semi-supervised multitask learning (MTL) framework, where we have multiple partially labeled data manifolds, each defining a classification task for which we wish to design a semi-supervised classifier. These different data sets may be observed simultaneously, or over the sensor "lifetime". We propose a soft sharing prior over the parameters of all classifiers and learn all tasks jointly. The soft-sharing prior enables any task to robustly borrow information from related tasks. The semi-supervised MTL combines the advantages of semi-supervised learning and multitask learning, thus further improving the generalization performance of each classifier. Our MTL (or life-long learning) framework is based on our previous semi-supervised learning formulation, termed neighborhood-based classifier (NeBC) [1]. The performance of the semi-supervised MTL is validated by experimental results on several sensing data sets.
半监督终身学习及其在传感中的应用
我们提出了一个半监督多任务学习(MTL)框架,其中我们有多个部分标记的数据流形,每个流形定义一个分类任务,我们希望为其设计一个半监督分类器。这些不同的数据集可以同时被观察到,或者在传感器的“生命周期”内被观察到。我们提出了对所有分类器参数的软先验共享,并联合学习所有任务。软共享先验使得任何任务都可以从相关任务中健壮地借用信息。半监督MTL结合了半监督学习和多任务学习的优点,从而进一步提高了各个分类器的泛化性能。我们的MTL(或终身学习)框架是基于我们之前的半监督学习公式,称为基于邻域的分类器(NeBC)[1]。在多个传感数据集上的实验结果验证了半监督MTL的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信