Fuzzy logic based detection of neuron bifurcations in microscopy images

M. Radojević, Ihor Smal, W. Niessen, E. Meijering
{"title":"Fuzzy logic based detection of neuron bifurcations in microscopy images","authors":"M. Radojević, Ihor Smal, W. Niessen, E. Meijering","doi":"10.1109/ISBI.2014.6868117","DOIUrl":null,"url":null,"abstract":"Quantitative analysis of neuronal cell morphology from microscopic image data requires accurate reconstruction of the axonal and dendritic trees. The most critical points to be detected in this process are the bifurcations. Here we present a new method for fully automatic detection of bifurcations in microscopic images. The proposed method models the essential characteristics of bifurcations and employs fuzzy rule based reasoning to decide whether the extracted image features indicate the presence of a bifurcation. Algorithm tests on synthetic image data show high noise immunity and experiments with real fluorescence microscopy data exhibit average recall and precision of 90.4% and 90.5% respectively.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Quantitative analysis of neuronal cell morphology from microscopic image data requires accurate reconstruction of the axonal and dendritic trees. The most critical points to be detected in this process are the bifurcations. Here we present a new method for fully automatic detection of bifurcations in microscopic images. The proposed method models the essential characteristics of bifurcations and employs fuzzy rule based reasoning to decide whether the extracted image features indicate the presence of a bifurcation. Algorithm tests on synthetic image data show high noise immunity and experiments with real fluorescence microscopy data exhibit average recall and precision of 90.4% and 90.5% respectively.
基于模糊逻辑的显微图像神经元分叉检测
从显微图像数据中定量分析神经元细胞形态需要精确重建轴突和树突状树。在此过程中最需要检测的关键点是分岔。在这里,我们提出了一种新的方法全自动检测分岔在显微图像。该方法对分岔的基本特征进行建模,并采用基于模糊规则的推理来确定提取的图像特征是否表明分岔的存在。算法在合成图像数据上的抗噪性能良好,在真实荧光显微镜数据上的平均查全率和查准率分别达到90.4%和90.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信