3D facial geometry analysis and estimation using embedded optical sensors on smart eyewear

Nao Asano, Katsutoshi Masai, Yuta Sugiura, M. Sugimoto
{"title":"3D facial geometry analysis and estimation using embedded optical sensors on smart eyewear","authors":"Nao Asano, Katsutoshi Masai, Yuta Sugiura, M. Sugimoto","doi":"10.1145/3230744.3230812","DOIUrl":null,"url":null,"abstract":"Facial performance capture is used for animation production that projects a performer's facial expression to a computer graphics model. Retro-reflective markers and cameras are widely used for the performance capture. To capture expressions, we need to place markers on the performer's face and calibrate the intrinsic and extrinsic parameters of cameras in advance. However, the measurable space is limited to the calibrated area. In this study, we propose a system to capture facial performance using a smart eyewear with photo-reflective sensors and machine learning technique. Also, we show a result of principal components analysis of facial geometry to determine a good estimation parameter set.","PeriodicalId":226759,"journal":{"name":"ACM SIGGRAPH 2018 Posters","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230744.3230812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Facial performance capture is used for animation production that projects a performer's facial expression to a computer graphics model. Retro-reflective markers and cameras are widely used for the performance capture. To capture expressions, we need to place markers on the performer's face and calibrate the intrinsic and extrinsic parameters of cameras in advance. However, the measurable space is limited to the calibrated area. In this study, we propose a system to capture facial performance using a smart eyewear with photo-reflective sensors and machine learning technique. Also, we show a result of principal components analysis of facial geometry to determine a good estimation parameter set.
基于嵌入式光学传感器的智能眼镜三维面部几何分析与估计
面部动作捕捉用于动画制作,将表演者的面部表情投射到计算机图形模型中。反光标记和相机被广泛用于表演捕捉。为了捕捉表情,我们需要在表演者的脸上放置标记,并预先校准相机的内在和外在参数。然而,可测量空间仅限于校准区域。在这项研究中,我们提出了一个系统,使用具有光反射传感器和机器学习技术的智能眼镜来捕捉面部表现。此外,我们还展示了人脸几何的主成分分析结果,以确定一个良好的估计参数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信