Visual exploration of machine learning results using data cube analysis

HILDA '16 Pub Date : 2016-06-26 DOI:10.1145/2939502.2939503
Minsuk Kahng, Dezhi Fang, Duen Horng Chau
{"title":"Visual exploration of machine learning results using data cube analysis","authors":"Minsuk Kahng, Dezhi Fang, Duen Horng Chau","doi":"10.1145/2939502.2939503","DOIUrl":null,"url":null,"abstract":"As complex machine learning systems become more widely adopted, it becomes increasingly challenging for users to understand models or interpret the results generated from the models. We present our ongoing work on developing interactive and visual approaches for exploring and understanding machine learning results using data cube analysis. We propose MLCube, a data cube inspired framework that enables users to define instance subsets using feature conditions and computes aggregate statistics and evaluation metrics over the subsets. We also design MLCube Explorer, an interactive visualization tool for comparing models' performances over the subsets. Users can interactively specify operations, such as drilling down to specific instance subsets, to perform more in-depth exploration. Through a usage scenario, we demonstrate how MLCube Explorer works with a public advertisement click log data set, to help a user build new advertisement click prediction models that advance over an existing model.","PeriodicalId":356971,"journal":{"name":"HILDA '16","volume":"71 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HILDA '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939502.2939503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

As complex machine learning systems become more widely adopted, it becomes increasingly challenging for users to understand models or interpret the results generated from the models. We present our ongoing work on developing interactive and visual approaches for exploring and understanding machine learning results using data cube analysis. We propose MLCube, a data cube inspired framework that enables users to define instance subsets using feature conditions and computes aggregate statistics and evaluation metrics over the subsets. We also design MLCube Explorer, an interactive visualization tool for comparing models' performances over the subsets. Users can interactively specify operations, such as drilling down to specific instance subsets, to perform more in-depth exploration. Through a usage scenario, we demonstrate how MLCube Explorer works with a public advertisement click log data set, to help a user build new advertisement click prediction models that advance over an existing model.
使用数据立方体分析对机器学习结果进行可视化探索
随着复杂的机器学习系统被越来越广泛地采用,用户理解模型或解释模型生成的结果变得越来越具有挑战性。我们介绍了我们正在进行的工作,开发交互式和可视化的方法来探索和理解使用数据立方体分析的机器学习结果。我们提出了MLCube,这是一个受数据立方体启发的框架,它使用户能够使用特征条件定义实例子集,并计算子集上的汇总统计信息和评估指标。我们还设计了MLCube Explorer,这是一个用于在子集上比较模型性能的交互式可视化工具。用户可以交互式地指定操作,例如向下钻取到特定的实例子集,以执行更深入的探索。通过一个使用场景,我们演示了MLCube Explorer如何处理公共广告点击日志数据集,以帮助用户构建新的广告点击预测模型,这些模型可以在现有模型之上进行改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信