Combining local and global visual feature similarity using a text search engine

Giuseppe Amato, Paolo Bolettieri, F. Falchi, C. Gennaro, F. Rabitti
{"title":"Combining local and global visual feature similarity using a text search engine","authors":"Giuseppe Amato, Paolo Bolettieri, F. Falchi, C. Gennaro, F. Rabitti","doi":"10.1109/CBMI.2011.5972519","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach that allows processing image content based queries expressed as arbitrary combinations of local and global visual features, by using a single index realized as an inverted file. The index was implemented on top of the Lucene retrieval engine. This is particularly useful to allow people to efficiently and interactively check the quality of the retrieval result by exploiting combinations of various features when using content based retrieval systems.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper we propose a novel approach that allows processing image content based queries expressed as arbitrary combinations of local and global visual features, by using a single index realized as an inverted file. The index was implemented on top of the Lucene retrieval engine. This is particularly useful to allow people to efficiently and interactively check the quality of the retrieval result by exploiting combinations of various features when using content based retrieval systems.
结合局部和全局视觉特征相似使用文本搜索引擎
在本文中,我们提出了一种新颖的方法,该方法允许处理基于图像内容的查询,这些查询表示为局部和全局视觉特征的任意组合,通过使用作为倒立文件实现的单个索引。索引是在Lucene检索引擎之上实现的。当使用基于内容的检索系统时,这对于允许人们通过利用各种特征的组合来有效地和交互式地检查检索结果的质量特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信